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Abstract: Let f be an analytic function in the Hardy space on the polydisc P2. In this article we discuss the area integral means 

Mp (f, r) of f on the polydisc P2 with radius r, and its weighted volume means Mp,α (f, r) with to the weight (1-|z1|
2)a×(1-|z2|

2)a. We 
prove that both Mp (f, r) and Mp,α (f, r) are strictly increasing in r unless f is a constant. In contrast to the classical case, we also 
give a example to show that log Mp,α (f, r) is not always convex with respect to log r, although that we still prove that log Mp (f, r) 
is logarithmically convex. 
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1. The Introduction 

Let f  be an analytic function on unit circle D  in 

complex plane ℂ . For 0 p< < ∞  the mean integral of f  

is defined as 

( )
1/

2
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1
( , ) ,0 1,

2

p
p

i
pM f r f re d r

π θ θ
π

 = ≤ < 
 ∫    (1) 

The classical Hardy convex theorem, which is an important 
tool for complex analysis and harmonic analysis, especially 

Hardy function space theory, states that ( ),pM f r  is strictly 

increasing in [ )0,1∈r  and ( )log ,pM f r  is logarithmically 

convex (see [1]). Xiao and Zhu discussed the extension of 
these results in the volume integral case in [2]. In fact, they 
considered the more general unit sphere problem, namely, 

( ) ( ) ( ) ( )
1/

,

1
, ,0 1,
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p
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n

M f r f z dv z r
v r

α α
α Β

 
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Β  
∫  (2) 

where α  is real number and ( ) ( ) ( )2
1dv z z dv z

α
α = −  is a 

weighted measure on the unit sphere, and concluded 

( ), ,pM f rα  strictly increases in r  and however 

( ),log ,pM f rα  of r  is logarithmically convex or 

logarithmically concave depends on the sign of the parameter 

α . Further they proved that ( ),log ,pM f rα  is 

logarithmically convex when 0α ≤ , and a logarithmically 

concave function when is non-negative. 
In this paper, we discuss the case on the polydisc 

{ } { }2 1 21 1z zΡ = < × < . Denote by 0 2 1 2∂ Ρ = ×S S  the 

characteristic boundary. Note that the topology of the 

characteristic boundary of the polydisc is very different from 

that of the unit sphere, therefore the function space on 2P  has 

some special properties (see [3]). 

Let ( )f z  be a holomorphic function on 2P  and ( )d zσ  
be a normalized Borel measures on a unit disk. For 0 p< < ∞ , 

the mean of weighted volume integral of ( )f z  is defined by 

( ) ( ) ( ) ( )
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v r
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where ( ) ( ) ( ) ( ) ( ), 1 2z z
dv z d z d zα β α βσ σ=  with 
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and 

( ) ( )
2

, 2 ,
r

v r dv zα β α β
Ρ

Ρ = ∫  

We will only discuss the case when α β=  in this article. 

We shall use the notation vα  instead of ,vα α  and 

( ), ,pM f rα  
instead of ( ), ,pM f rα β， . In particular, when 

p = ∞ , it can be understood as 

( ) ( ){ } ( )2 2, sup : , , ,0 1pM f r f z z z r L dv rα∞ = ∈Ρ = Ρ ≤ <
 

in the usual sense. When 0 p< < ∞  and 1α > , the weighted 

Bergman space 
p
αΑ  is the intersection of holomorphic 

function spaces ( )2Η Ρ  and ( )2 ,pL dvαΡ  on 2Ρ , where the 

norm on 
p
αΑ  is given by 

( ) ( )
2

1/

,

p
p

p
f f z dv zαα Ρ

 =  
 ∫

 

We need some knowledge of the Hardy space. For 

0 p< < ∞ , the unit polydisc	�� is a Hardy space, and pΗ  is 

a holomorphic function that contains 2Ρ  satisfies the 

following conditions: 

( )
0 1

sup ,pp
r

f M f r
≤ <

= < ∞ , 

Where 
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 =  
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is the area integral mean of f and ( )dσ ζ  is the normalization 

Lebesgue measure of multi-cylinder surface 2∂Ρ , namely 

( )
( ) 1 22

1

2
d d dσ ζ θ θ

π
= . It should pointed out here that the 

Hardy space on polydisc is quite different from those on 
spheres. For example, the modulus of functions of Hardy 
space on n-dimensional complex spheres is integral on real 
2n−1 dimensional spheres, while the modulus of function of 
Hardy space on n-dimensional polydisc is integral on real 
n-dimensional torus. In this paper, we will discuss the 

monotonicity of ( ),pM f r  and ( ), ,pM f rα  and the 

logarithmical convexity of the corresponding logarithmic 

functions ( )log ,pM f r  and ( )log ,pM f rα， . Since the 

symmetry of multiple cylinders is not as good as that of unit 
spheres, the method presented in [2] do not apply to here. But 
we find a new method to discuss it, and there will be some new 

conclusions. 

2. Monotonicity of ( ),pM f r  and ( ), ,αpM f r  

and Its Application 

We will firstly consider the case of the Hardy space. 

Theorem 2.1 Let 0 p< < ∞  and let ( )f z  be a 

holomorphic function with extraordinary values on 2Ρ . Then 

the function ( ),pr M f r֏  is strictly increasing in the 

interval [ )0,1 . 

Remark. The same theorem on the unit disc has been 

proved in [4]. This problem on multiple cylinders is not 

easy to be transformed into the unit disc. It is also 

di erent from the case on the unit sphere in [2]. The ff

symmetry of multiple cylinders is insu cient to use slice. ff

We need some special handling to prove it. 

Proof: Suppose that ( ) ( )1 2,f z f z z=  is not a constant 

function. Then either ( ) ( )
1 2 1 2,zf z f z z=  is non-constant 

with respect to 2 1z s∈  for some fixed 1z , or 

( ) ( )
2 1 1 2,zf z f z z=  is a non-constant with respect to 1 1z s∈  

for some fixed 2z . Without loss of generality, we might 

consider the former case. Instead of dealing directly with 

( ),pM f r , let’s start with binary real functions of functions 

[5]. 
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    (5) 

where 
1 20 , 1r r≤ < . For fixed 

2r  and 
2ζ , the inner integral 

( ) ( )
1

1 1 2 2 1,
p

s
f r r dsζ ζ ζ∫  

in (5) is ( ) ( )
2 1 1 2,zf z f z z= , which corresponding to a 

unitary holomorphic function ( )
2 2 1,p

p rM f rζ . Hence 

( )1 2, ,p
pM f r r  is increasing with respect to 1r , i. e. 

( )1 2

1

, ,
0.

p
pM f r r

r

∂
≥

∂
              (6) 

Similarly, ( )1 2, ,p
pM f r r  is an increasing function of 2r . 

In particular, since ( ) ( )
2 1 1 2,zf z f z z=  is a non-constant 
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function, ( )1 2, ,p
pM f r r  is a strictly increasing function of 2r , 

so 
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Now from ( ) ( )1 2, , ,p p
p pM f r M f r r=  and (6),(7) we get 
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which implies that ( ),pM f r  is strictly increasing. 

We continue to prove the following conclusion of 

( ), ,pM f rα . 

Theorem 2.2 For 0 p< < ∞  and α  being a real number. 

Let ( )f z  be a holomorphic function on 2Ρ . Then the 

function ( ), , ,α β֏ pr M f r  is an increasing function on the 

interval [ )0,1 . In particular, if f  is non-constant, then f  is 

strictly increasing. 

Proof: We may rewrite the integral as follows 
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where ( )
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we have 
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Then the derivative of the function ( ), ,p
pM f rα  with 

respect to r  is given by 
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it follows that 
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and the equality in (14) holds only if f  is a constant 

function. 

Therefore, ( ), ,α
p
pM f r  or ( ), ,αpM f r  is an increasing 

function with respect to r , and if f  is not a constant 

function, it is strictly increasing. 

3. Logarithmical Convexity 

We now consider the logarithmic function ( )log ,pM f r  

on the Hardy space. 

Theorem 3.1 Let 0 p< < ∞  and f  be a holomorphic 

function in the Hardy space 2H ( )p Ρ . Then the function 

( )log ,pM f r  is a convex function with respect to log r  

with ( )0,1r ∈ . 

Proof: It is similar to the proof of Theorem 1.6 in Duren’s 

book [4], w suppose for any real number λ  that 
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Then ( ) ( )1 2 1 2, , ,0, ,p pM f r r m f r r=  

( )
21 2 1 2,
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zz z f z z
λ λ

 is a pluriharmonic function on 

( ){ }1 2 2 1 2, , ,z z r z z r′ ′′∈ Ρ < < , so it exists a pluriharmonic 

function ( )1 2,U z z  on ( ){ }1 2 2 1 2, , ,z z r z z r′ ′′∈ Ρ < <  and 

equal to ( )
21 2 1 2,

p

zz z f z z
λ λ

 on the boundary. By the 

relationship between the subharmonic function and the 

harmonic function, we have 
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The second-order mixed partial derivative of the right-hand 
side of (16) is obtained and then the order of integral and 
partial derivative is exchanged to get 
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In the upper formula, 1/ n∂ ∂  represents the normal partial 

derivative of the first variable, 
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where 0c >  is a constant. The right hand side of (18), (16) is 

the following function, 

1 2 1 1 2 2log log log logr r r r cΑ + Β + Β +       (19) 

among them, 0Α > . Now by (18) and (19) we have 
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The above formula is obviously a convex function of log r , so (16) yields that ( ), , ,pm f r rλ  is logarithmically convex, that 

is, 
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Similar to the discussion in Xiao-Zhu [2], (21) and Duren [4, 

p. 10] implies that ( )log ,pm f r  is also a convex function of 

log r , which completes the proof. 

Remark. Inspired by the logaithmical convexity in Theorem 

3.1 and the weightless integral mean ( ),pM f r , Xiao and 

Zhu naturally consider the logarithmic convexity of the 

volume integral mean ( ), ,pM f rα  of log r  on a unit sphere 

(see [2]). They found that the logarithmical convexity problem 

is more complicated at this time, in fact, for some α , 

( ), ,pM f rα  is logarithmically convex, while for others it is 

logarithmically concave. On multiple cylinders, the problem 
becomes much more complicated because of the correlation 

between the two parameters α  and β . We now give some 

examples below. 

Example 3.2. Let f be a holomorphic function on 2Ρ . Then 

for 1 p≤ < ∞ , ( ),0log ,pM f r  is a convex function of 

log r . 

Proof: Notice first that we have  
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and we may rewrite it as 
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, ,
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pM f r d d f r r dρ ρ ρ ρ ρ ζ ρ ζ σ ζ
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By Theorem 3.1, the logarithm of the innermost integral of 
(22) is logarithmically convex, so by the method in [6] we 

obtain that ( ),0log ,pM f r  is a convex function of log r . 

Example 3.3. For 2p = , 1α = . Let ( ) 1 2f z z z= . Then 

( ),log ,pM f rα  is a concave function of log r . 

Proof: By [2, Example 10], the logarithms of volume mean 

integrals ( ), 1,pM z rα  and ( ), 2 ,pM z rα  on a unit disk are 

concave function of log r . Then simple calculations give 
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( ) ( ) ( ), , 1 , 2log , log , log ,p p pM f r M z r M z rα α α= + . 

Hence ( ),log ,pM f rα  is concave function of log r . 

4. Conclusion 

The proof of the main theorem (Theorem 3.1) is different 
from that of Xiao-Zhu [2, 7-15]. And we only work on the 
case of α β= . The problem becomes much more 

complicated for the case of different because parameters α  

and β . In addition to the lack of symmetry on multiple 

cylinders mentioned in the proof which makes the tool of slice 
function unusable, it can also be seen from (20) that the proof 
here does not deal with the case on three-dimensional multiple 
cylinders. 
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