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Abstract: Let R be a commutative Noetherian ring and I be an ideal of R. We say that I satisfies the persistence property
if AssR(R/I k ) ⊆ AssR(R/I k+1 ) for all positive integers k, where AssR(R/I ) denotes the set of associated prime ideals of
I . In addition, an ideal I has the strong persistence property if (I k+1 : RI ) = I k for all positive integers k. Also, an ideal I is
called normally torsion-free if AssR(R/I k ) ⊆ AssR(R/I ) for all positive integers k. In this paper, we collect the latest results in
associated primes of powers of monomial ideals in three concepts, i.e., the persistence property, strong persistence property, and
normally torsion-freeness. Also, we present some classes of monomial ideals such that are none of edge ideals, cover ideals, and
polymatroidal ideals, but satisfy the persistence property and strong persistence property. In particular, we study the Alexander
dual of path ideals of unrooted starlike trees. Furthermore, we probe the normally torsion-freeness of the Alexander dual of
some path ideals which are related to banana trees. We close this paper with exploring the normally torsion-freeness under some
monomial operations.

Keywords: Associated Prime Ideals, Powers of Ideals, Monomial Ideals, Persistence Property, Strong Persistence Property,
Normally Torsion-free

1. Introduction

Let I be an ideal of a commutative Noetherian ring R.
A prime ideal p ⊂ R is an associated prime of I if there
exists an element v in R such that p = (I :R v), where
(I :R v) = {r ∈ R| rv ∈ I}. The set of associated primes
of I , denoted by AssR(R/I), is the set of all prime ideals
associated to I . We will be interested in the sets AssR(R/Ik)
when k varies. A well-known result of Brodmann [1] says that
the sequence {AssR(R/Ik)}k≥1 of associated prime ideals is
stationary for large k. In fact, there exists a positive integer
k0 such that AssR(R/Ik) = AssR(R/Ik0) for all integers
k ≥ k0. The least such integer k0 is called the index of
stability of I and AssR(R/Ik0) is called the stable set of
associated prime ideals to I , denoted by Ass∞(I). It should
be noted that there are only a few known results providing
exact calculations of the stable set and the index of stability
for monomial ideals, see [2, 3, 4]. Moreover, several notions
arise in the context of Brodmann’s result. In this paper, we
only focus on three notions, that is, persistence property, strong

persistence property, and normally torsion-freeness.
In Sections 2 and 3, we will concentrate on the persistence

property and strong persistence property. We say that an
ideal I in a commutative Noetherian ring R satisfies the
persistence property if AssR(R/Ik) ⊆ AssR(R/Ik+1) for
all integers k ≥ 1. Along this argument, an ideal I in a
commutative Noetherian ring R has the strong persistence
property if (Ik+1 :R I) = Ik for all positive integers k.
McAdam [5] presented an example which says, in general,
there exists an ideal which does not satisfy the persistence
property. Now, suppose that I is a monomial ideal in the
polynomial ring R = K[x1, . . . , xn] over a field K and
x1, . . . , xn are indeterminates. It is known that there are
some monomial ideals which do not satisfy the persistence
property, see for counterexamples [6, 7, 8]. Furthermore,
Kaiser, Stehĺik, and Škrekovski [9] have shown that not all
square-free monomial ideals have the persistence property.
Also, Ratliff showed in [10] that (Ik+1 :R I) = Ik for
sufficient k. However, by applying combinatorial methods,
it has been shown that many large families of square-free
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monomial ideals satisfy the persistence property and the strong
persistence property. These attempts led to the persistence
property and also the strong persistence property hold for edge
ideals of finite simple graphs [7], edge ideals of finite graphs
with loops [11], and polymatroidal ideals [12]. Furthermore,
according to [13], cover ideals of perfect graphs have the
persistence property. In these sections, we introduce the
other classes of monomial ideals which have the persistence
property or strong persistence property.

Section 4 is devoted to the study of normally torsion-
freeness for monomial ideals. An ideal I in a commutative
Noetherian ring R is called normally torsion-free if
AssR(R/Ik) ⊆ AssR(R/I) for all positive integers k. A
few examples of normally torsion-free monomial ideals appear
from graph theory. In [14], it has been already proved that a
finite simple graph G is bipartite if and only if its edge ideal is
normally torsion-free. Moreover, by [15], it is well-known that
the cover ideals of bipartite graphs are normally torsion-free.
In addition, in [12], it has been verified that every transversal
polymatroidal ideal is normally torsion-free. However, it is
little known for the normally torsion-free monomial ideals
which are not square-free. In this section, we express the
other classes of normally torsion-free monomial ideals, and
also introduce several methods for constructing new normally
torsion-free non-square-free monomial ideals based on the
monomial ideals which have normally torsion-freeness.

Several questions arise along these arguments for future
works. In Section 5, we terminate this paper with some open
questions which are devoted to the persistence property, strong
persistence property, normally torsion-freeness of monomial
ideals, and the unique homogeneous maximal ideal m =
(x1, . . . , xn) of R = K[x1, . . . , xn].

It should be noted that one can examine the persistence
property for ideals in some commutative rings other than
polynomial rings. To see this, one may consider two rings
such that one of them is Noetherian other than the polynomial
ring, say Dedekind rings, and the other one is non-Noetherian,
say Prüfer domains. Recall that an integral domain R is a
Dedekind ring if every proper ideal in R is uniquely a product
of a finite number of prime ideals, see [16, Theorem 6.10].
Let I be a proper ideal in a Dedekind ring R. Then I has
the persistence property ([17, Theorem 2.3]), and also it is
normally torsion-free ([17, Corollary 2.5]). In addition, if I
is a non-zero ideal in a Dedekind ring R, then I has the strong
persistence property ([17, Corollary 3.2]). Remember that a
Prüfer domain R is an integral domain in which every non-
zero finitely generated ideal is invertible. Let I be a non-zero
finitely generated ideal in a Prüfer domain R. Then, with
respect to weakly associated prime ideals, one can deduce
that I has the persistence property ([17, Theorem 5.8]), and
also it has the strong persistence property ([17, Theorem 5.2]).
One may also extend the notion of the persistence property
for ideals to the persistence property for rings ([17, Definition
5.9]).

Along our previous arguments, one can state the concept of
the persistence property for associated primes of a family of

ideals. In fact, based on [18, Definition 1.1], let Φ be a family
of ideals of a commutative Noetherian ring R. Then we say
that Φ has the persistence property if there exists a relation
≤ on Φ such that (Φ,≤) is a partially ordered set with the
following properties:

(i) For all b ∈ Φ, the set (
⋃

a∈Φ AssR(R/a))∩V (b) is finite,
where for an ideal c of R, V (c) is the set of prime ideals
contain c.

(ii) For all ideals a, b ∈ Φ with a ≤ b, we have that
AssR(R/a) ⊆ AssR(R/b).

By considering definition above, one can present two such
families of ideals with the persistence property. To see one
of them, let n be a positive integer with n ≤ depth(R). Put
Φ = {(x1, . . . , xn) : x1, . . . , xn is an R-regular sequence}.

Then (Φ,⊇) satisfies the persistence property (cf. [18,
Theorem 2.1]). To know another one, we refer the reader to
[18, Theorem 2.3].

Throughout this paper, R = K[x1, . . . , xn] is the
polynomial ring over a field K and x1, . . . , xn are
indeterminates. Also, for a monomial ideal I , we denote the
unique minimal set of monomial generators of I by G(I).
The symbol N (respectively, N0) will always denote the set of
positive (respectively, non-negative) integers. Moreover, the
symbol V (G) (respectively, E(G)) is the set of vertices of a
graph G (respectively, the set of edges of a graph G) and LG
is the set of leaves of G (i.e., the set of vertices of degree one
in G). We also denote the distance between two vertices u and
v in V (G) by d(u, v).

2. Persistence Property for Monomial
Ideals

In this section, we present some classes of monomial
ideals such that are none of edge ideals, cover ideals, and
polymatroidal ideals, but satisfy the persistence property. To
start our arguments, let G be a finite simple graph, that is to
say, G has no loops and no multiple edges. The edge ideal of a
graph G, which was introduced by Villarreal [19], is the ideal
generated by the monomials xixj , where {i, j} is an edge of
G. Path ideals of graphs were first introduced by Conca and
De Negri [20] in the context of monomial ideals of linear type.
Hereafter, one needs to recall that a path of length t in a finite
simple graph G is a sequence of vertices i1, . . . , it+1 such that
ej = {ij , ij+1} is an edge for j = 1, . . . , t. The path ideal
corresponding to G of length t is defined by

It(G) := (xi1 · · ·xit+1 : i1, . . . , it+1

is a path of G of length t), and also the Alexander dual of
It(G) is defined as follows

It(G)∨ :=
⋂

i1,...,it+1 is a path ofG of length t

(xi1 , . . . , xit+1
).

We observe that I1(G) is the ordinary edge ideal
corresponding to G, and so the Alexander dual of it, i.e.,
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I1(G)∨, is exactly the cover ideal corresponding to G. In
Theorem 2.2, we give a class of graphs, which are called
centipede graphs, and show that path ideals generated by paths
of length two, have the persistence property. However, chasing
the proof yields that this ideal has the strong persistence
property as well. In subsequent definition, we introduce

the definition of centipede graphs. Definition 2.1 (see [22,
Definition 2.10])The centipede graph Wn with n ∈ N,
as shown in figure below, is the graph on the vertex set
{a1, . . . , an}∪{b1, . . . , bn}. The set of edges of the centipede
graph is given by

E(Wn) = {{ai, bi} : 1 ≤ i ≤ n} ∪ {{bj , bj+1} : 1 ≤ j ≤ n− 1}.

Figure 1. Centipede graph.

Theorem 2.2.(see [21, Theorem 2.11]) Let Wn, for some
n ∈ N with n ≥ 2, be a centipede graph with corresponding
path ideal I2(Wn). Then I2(Wn) has the persistence property.
We now turn our attention to directed graphs. To do this,
we should recall some definitions from [22] which will be
needed in the sequel. Definition 2.3.(see [22, Definition 2.1])A
directed edge of a graph is an assignment of a direction to an
edge of a graph. If {w, u} is an edge, we write (w, u) to denote
the directed edge, where the direction is from w to u. A graph
is a directed graph if each edge has been assigned a direction.
A path of length t in a directed graph is a sequence of vertices
i1, . . . , it+1 such that ej = (ij , ij+1) is a directed edge for
j = 1, . . . , t. Fix a positive integer t and a directed graph G.
The path ideal ofG of length t is the following monomial ideal

It(G) := (xi1 · · ·xit+1
: i1, . . . , it+1 is a path of G of length t),

and also the Alexander dual of It(G) is defined as follows:

It(G)∨ :=
⋂

i1,...,it+1 is a path ofG of length t

(xi1 , . . . , xit+1
).

A tree T can be considered as a directed graph by choosing
any vertex of T to be the root of the tree, and assigning to each
edge the direction “away” from the root. Since T is a tree, the

assignment of a direction will always be possible. A rooted
tree T is a tree with one vertex chosen as root. If tree T has no
such root, then we say that T is unrooted.

Example 2.4. Consider

T1 = (V (T1), E(T1))

and

T2 = (V (T2), E(T2)),

where

V (T1) = V (T2) = {v1, v2, v3, v4, v5}

E(T1) = {{v1, v2}, {v1, v3}, {v2, v4}, {v2, v5}},

and

E(T2) = {(v1, v2), (v1, v3), (v2, v4), (v2, v5)}

in the following graphs. Then the tree T1, the left graph in
figure below, is an example of a tree which is not rooted, while
the tree T2, the right graph in figure below, is rooted at the
vertex v1.

Figure 2. Unrooted and rooted trees.
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Already in [23, Theorem 3.1] (when t = 2), has been proved
the following theorem. Our aim is to generalize this result to
unrooted symmetric starlike trees. Let K1,n be a star graph
with the vertex set {z, x1, . . . , xn} and center z. Let J2 be the
corresponding Alexander dual of I2(K1,n). Then

(1) (z, x1, . . . , xn) ∈ Ass(R/Js2 ) for s ≥ n− 1 and

(2) (z, x1, . . . , xn) /∈ Ass(R/Js2 ) for s < n− 1,

where (z, x1, . . . , xn) ⊂ K[z, x1, . . . , xn] is the maximal
ideal.

To understand Theorem 2.8, one requires to know the
definition of starlike graphs. To do this, we begin with the

following definition. Definition 2.6. (see [22, Definition 2.4])
A tree is said to be starlike if exactly one of its vertices has
degree greater than two. This vertex is called the center of the
starlike.

We also say that T is a symmetric starlike tree if T is a
starlike tree and d(u, v) = d(u′, v′) for all u, u′, v, v′ ∈ LT
with u 6= v and u′ 6= v′.

Example 2.7. Consider the following trees. Then the left
graph in figure below is an example of a starlike tree with
center z, while the right graph in figure below is an example of
a symmetric starlike tree with center z.

Figure 3. Starlike and symmetric starlike trees.

In the sequel, we probe the persistence property for the
Alexander dual of path ideals of unrooted starlike trees.

Theorem 2.8.(see [22, Theorem 2.6]) Let T be an unrooted
starlike tree on the vertex set {z, 1, . . . , n} with center z. Also
let I be the monomial ideal corresponding to T which is
generated by the paths of maximal lengths, and corresponding
Alexander dual J . Then the ideal J has the persistence

property.
In the next example we clarify the main goal of Theorem

2.8. Example 2.9.(see [22, Example 2.7])Suppose that T is the
unrooted starlike tree with center z, as the left graph in Figure
3. By using the notations that we used in Theorem 2.8, we
have

I = (x4x3x2x1xzx8x9x10, x4x3x2x1xzx7, x5x6xzx7, x4x3x2x1xzx5x6,

x5x6xzx8x9x10, x7xzx8x9x10),

and so

J =(x4, x3, x2, x1, xz, x8, x9, x10) ∩ (x4, x3, x2, x1, xz, x7) ∩ (x5, x6, xz, x7)

∩(x4, x3, x2, x1, xz, x5, x6) ∩ (x5, x6, xz, x8, x9, x10) ∩ (x7, xz, x8, x9, x10).

According to Theorem 2.8, the ideal J has the persistence
property. The corollary below is an immediate consequence of
Theorem 2.8.

Corollary 2.10.(see [22, Corollary 2.8]) Suppose that T is
an unrooted symmetric starlike tree on the vertex set V (T ) =
{z, 1, . . . , n} with center z and the following edge set.

E(T ) = {{z, i}, {kj + i, kj + k + i} | i = 1, . . . , k, j = 0, . . . ,m− 1},

Such that n = k(m + 1) for some k ∈ N and m ∈ N0.
Suppose also that I2m+2(T ) is the path ideal corresponding to
T of length 2m+ 2 and corresponding Alexander dual J2m+2.
Then the ideal J2m+2 has the persistence property.

Let us illustrate Corollary 2.10 with an example. Example
2.11. Suppose that T is the unrooted symmetric starlike tree
with center z, as shown in Figure 3, on the vertex set V (T ) =
{z, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Then

I6(T ) = (x7x4x1xzx2x5x8, x7x4x1xzx3x6x9, x8x5x2xzx3x6x9).
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It follows that the Alexander dual of I6(T ), i.e. J6, is given by

J6 = (x7, x4, x1, xz, x2, x5, x8) ∩ (x7, x4, x1, xz, x3, x6, x9) ∩ (x8, x5, x2, xz, x3, x6, x9)

= (xz, x8x9, x7x9, x5x9, x4x9, x2x9, x1x9, x7x8, x6x8, x4x8, x3x8, x1x8, x6x7,

x5x7, x3x7, x2x7, x5x6, x4x6, x2x6, x1x6, x4x5, x3x5, x1x5, x3x4, x2x4, x2x3,

x1x3, x1x2).

Now, Corollary 2.10 implies that the ideal J6 has the
persistence property.

We now examine when the unique homogenous maximal
ideal appears. To achieve this, we first recall the definition
of the expansion operator on monomial ideals which has been
stated in [24], and then apply it as a criterion for the persistence
property of monomial ideals.

Let R be the polynomial ring over a field K in the variables
x1, . . . , xn. Fix an ordered n-tuple (i1, . . . , in) of positive
integers, and consider the polynomial ring R(i1,...,in) over K
in the variables

x11, . . . , x1i1 , x21, . . . , x2i2 , . . . , xn1, . . . , xnin .

Let pj be the monomial prime ideal (xj1, xj2, . . . , xjij ) ⊆
R(i1,...,in) for all j = 1, . . . , n. Attached to each
monomial ideal I ⊂ R with a set of monomial generators
{xa1 , . . . ,xam}, where xai = x1

ai(1) · · ·xnai(n) and
ai(j) denotes the j-th component of the vector ai =
(ai(1), . . . , ai(n)) for all i = 1, . . . ,m. We define the
expansion of I with respect to the n-tuple (i1, . . . , in), denoted
by I(i1,...,in), to be the monomial ideal

I(i1,...,in) =

m∑
i=1

p
ai(1)
1 · · · pai(n)

n ⊆ R(i1,...,in).

We simply write R∗ and I∗, respectively, rather than
R(i1,...,in) and I(i1,...,in).

Example 2.12. Consider R = K[x1, x2, x3] and the
ordered 3-tuple (1, 3, 2). Then we have p1 = (x11),
p2 = (x21, x22, x23), and p3 = (x31, x32). So for
the monomial ideal I = (x1x2, x

2
3), the ideal I∗ ⊆

K[x11, x21, x22, x23, x31, x32] is p1p2 + p2
3, namely

I∗ = (x11x21, x11x22, x11x23, x
2
31, x31x32, x

2
32).

In order to prove Theorem 2.14 below, one needs the
following lemma.

Lemma 2.13.(see [22, Lemma 2.9]) Let I be a monomial
ideal of R. Then I has the persistence property if and only if
I∗ has.

We are now in a position to verify Theorem 2.14.

Theorem 2.14.(see [22, Theorem 2.10]) Let T be an
unrooted starlike tree on the vertex set {z, 1, . . . , n} with
center z. Also let I be the monomial ideal corresponding to
T which is generated by the paths of maximal lengths, and
corresponding Alexander dual J . If degT z = k, then

(1)(xz, x1, . . . , xn) ∈ AssR′(R
′/Js) for s ≥ k − 1, and

(2)(xz, x1, . . . , xn) /∈ AssR′(R
′/Js) for s < k − 1,

where (xz, x1, . . . , xn) is the unique homogeneous maximal
ideal in the polynomial ring R′ = K[xz, x1, . . . , xn].

Proof We give a sketch of the proof. Since degT z =
k, the graph T \ {z} has exactly k connected components,
say L1, . . . , Lk, where each component is a line graph with
|V (Li)| = hi for each i = 1, . . . , k. Put h0 := 0 and for
i = 1, . . . , k, let

V (Li) := {h1 + · · ·+ hi−1 + j : j = 1, . . . , hi}.

This implies that E(T ) is given by

{{z,
i−1∑
t=1

ht + 1}, {
i−1∑
t=1

ht + j,

i−1∑
t=1

ht + j + 1} :

i = 1, . . . , k, j = 1, . . . , hi − 1}.

Now, set

pi := (xh1+···+hi−1+j , xh1+···+hi−1+j+1 :

j = 1, . . . , hi − 1)

for i = 1, . . . , k. Then one can conclude that

J =
⋂

i,j∈{1,...,k},i6=j

(pi + xzR
′ + pj),

and so

J = xzR
′ +

⋂
i,j∈{1,...,k},i6=j

(pi + pj)

It is routine to check that⋂
i,j∈{1,...,k},i6=j

(pi + pj) =

k∑
j=1

p1 ∩ · · · ∩ pj−1 ∩ p̂j ∩ pj+1 ∩ · · · ∩ pk,

Where p̂j means that this term is omitted. Due to pi and
pj , for every i, j ∈ {1, . . . , k} with i 6= j, are generated by

disjoint sets, it follows that pi ∩ pj = pipj , and so

J = xzR
′ +

k∑
j=1

p1 · · · pj−1p̂jpj+1 · · · pk.
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Now, consider the following monomial ideal

a := xzR
′ +

k∑
j=1

(x1 · · ·xj−1x̂jxj+1 · · ·xk)R′,

where x̂j means that this term is omitted. In order to
use Lemma 2.13, set pk+1 := xzR

′. This implies that
J is the expansion of a with respect to the (k + 1)-tuple
(h1, h2, h3, . . . , hk, 1). Accoridng to [23, Lemma 2.5], when
t = 2, we obtain a = J2(G), where G = K1,n is the
star graph on the vertex set {z, 1, . . . , n} with center z and
corresponding Alexander dual J2(G). Therefore the result
follows immediately from Lemma 2.13, [24, Proposition 1.2],
and Theorem 2.5.

We can apply Theorem 2.14 to generalize Theorem to
unrooted symmetric starlike trees in the following corollary.

Corollary 2.15.(see [22, Corollary 2.11]) Suppose that T is
an unrooted symmetric starlike tree on the vertex set V (T ) =
{z, 1, . . . , n} with center z and the following edge set

E(T ) = {{z, i}, {kj + i, kj + k + i} |
i = 1, . . . , k and j = 0, . . . ,m− 1}

such that n = k(m+1) for some k ∈ N andm ∈ N0. Suppose
also that I2m+2(T ) is the path ideal corresponding to T of
length 2m+2 and corresponding Alexander dual J2m+2. Then

(1) (xz, x1, . . . , xn) ∈ AssR′(R
′/Js2m+2) for s ≥ k − 1,

and

(2) (xz, x1, . . . , xn) /∈ AssR′(R
′/Js2m+2) for s < k − 1,

where (xz, x1, . . . , xn) is the unique homogeneous maximal
ideal in the polynomial ring R′ = K[xz, x1, . . . , xn]. The
subsequent example illuminates what happens in Corollary
2.15.

Example 2.16. (see [22, Example 2.12]) Suppose that T is
the unrooted symmetric starlike tree, as shown in figure below,
on the following vertex set

V (T ) = {z, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}.

Figure 4. Unrooted symmetric starlike tree T.

Hence we obtain the path ideal I6(T ), which is given by

(x11x6x1xzx2x7x12, x11x6x1xzx3x8x13, x11x6x1xzx4x9x14, x11x6x1xzx5x10x15,

x12x7x2xzx3x8x13, x12x7x2xzx4x9x14, x12x7x2xzx5x10x15, x13x8x3xzx4x9x14,

x13x8x3xzx5x10x15, x14x9x4xzx5x10x15).

It follows that the Alexander dual of I6(T ) is given by

J6 = (x11, x6, x1, xz, x2, x7, x12) ∩ (x11, x6, x1, xz, x3, x8, x13)

∩ (x11, x6, x1, xz, x4, x9, x14) ∩ (x11, x6, x1, xz, x5, x10, x15)

∩ (x12, x7, x2, xz, x3, x8, x13) ∩ (x12, x7, x2, xz, x4, x9, x14)

∩ (x12, x7, x2, xz, x5, x10, x15) ∩ (x13, x8, x3, xz, x4, x9, x14)

∩ (x13, x8, x3, xz, x5, x10, x15) ∩ (x14, x9, x4, xz, x5, x10, x15).

Due to Theorem 2.14, one can conlcude that
(1)(xz, x1, . . . , x15) ∈ AssR′(R

′/Js6 ) for s ≥ 4, and

(2)(xz, x1, . . . , x15) /∈ AssR′(R
′/Js6 ) for s < 4,

Where (xz, x1, . . . , x15) is the unique homogeneous
maximal ideal in the polynomial ring R′ =
K[xz, x1, . . . , x15].

The example below illuminates our method for constructing
new monomial ideals which have the persistence property
based on the monomial ideals so that they have the persistence

property. To achieve this, one requires the following
proposition.

Proposition 2.17.(see [25, Proposition 4.4]) Let I be a
monomial ideal in a polynomial ring R = K[x1, . . . , xn]
which has the persistence property, and let u = xa1i1 · · ·x

ar
ir

be a monomial in R with a1, . . . , ar ∈ N. Then uI has the
persistence property.

Example 2.18.(see [25, Example 4.5]) Let the monomial
ideal



International Journal of Theoretical and Applied Mathematics 2020; 3(1): 1-13 7

J :=(x11x
2
21x

2
31x41x51, x11x

2
21x

2
31x41x52, x11x

2
21x

2
31x42x51, x11x

2
21x

2
31x42x52,

x12x
2
21x

2
31x41x51, x12x

2
21x

2
31x41x52, x12x

2
21x

2
31x42x51, x12x

2
21x

2
31x42x52,

x2
21x

3
31x51, x

2
21x

3
31x52, x11x21x

3
31x41x51, x11x21x

3
31x41x52, x11x21x

3
31x42x51,

x11x21x
3
31x42x52, x12x21x

3
31x41x51, x12x21x

3
31x41x52, x12x21x

3
31x42x51,

x12x21x
3
31x42x52, x21x

2
31x

2
51x61x71, x21x

2
31x

2
51x62x71, x21x

2
31x

2
51x63x71,

x21x
2
31x51x52x61x71, x21x

2
31x51x52x62x71, x21x

2
31x51x52x63x71,

x21x
2
31x

2
52x61x71, x21x

2
31x

2
52x62x71, x21x

2
31x

2
52x63x71),

Be in the polynomial ring

R = K[x11, x12, x21, x31, x41, x42, x51, x52, x61, x62, x63, x71]

We claim that J has the persistence property. To do this, put
p1 := (x11, x12), p2 := (x21), p3 := (x31), p4 := (x41, x42),
p5 := (x51, x52), p6 := (x61, x62, x63), and p7 := (x71). It is
routine to check that

J = p1p
2
2p

2
3p4p5 + p2

2p
3
3p5 + p1p2p

3
3p4p5 + p2p

2
3p

2
5p6p7.

Now, consider the following monomial ideal

I := (x1x
2
2x

2
3x4x5, x

2
2x

3
3x5, x1x2x

3
3, x4x5, x2x

2
3x

2
5x6x7),

in the polynomial ring R1 = K[x1, x2, x3, x4, x5, x6, x7]. It
is easy to see that J is the expansion of I , with respect to
the 7-tuple (2, 1, 1, 2, 2, 3, 1). In order to prove our claim,
set I1 := (x1x2x4, x2x3, x1x3x4, x5x6x7) and u := x2x

2
3x5.

Based on Definition 3, the ideal I1 is a unisplit monomial ideal.
Theorems 3 and 3 imply that I1 has the persistence property
and, by Proposition 2.17, one can conclude that I = uI1 has
the persistence property. Now, Lemma 2.13 implies that J has
the persistence property, as required.

We end up this section by stating a theorem which yields
a necessary and sufficient condition whether the unique
homogeneous maximal ideal appears in the set of associated
prime ideals.

Theorem 2.19.(see [26, Theorem 2.7]) Suppose that I is a
monomial ideal in a polynomial ring R = K[x1, . . . , xn],
m = (x1, . . . , xn), and

G(I) = {xr1,11 · · ·xr1,nn , . . . , x
rk,1

1 · · ·xrk,n
n },

it with k ≥ n. Then m ∈ AssR(R/I) if and only if there
exist distinct integers i1, . . . , in ∈ {1, . . . , k} such that the
following conditions hold:

(i) |Cj | = 1, where Cj = {it | rit,j =
max{ri1,j , . . . , rin,j}} for all j = 1, . . . , n;

(ii) Ci ∩ Cj = ∅ for all i 6= j;

(iii) xri,11 · · ·xri,nn - x
ri1,1−1
1 · · ·xrin,n−1

n for each i ∈
{1, . . . , k} \ {i1, . . . , in}.

We are now ready to present an example which illustrates
the details of Theorem 2.19.

It Example 2.20. (see [26, Example 2.8]) Consider the
following monomial ideal

I = (x2
1x

4
2x3, x

3
1x

3
2x3, x

4
1x

2
2x3, x1x

3
2x

4
3, x

3
1x

2
2x

3
3),

in the polynomial ring R = K[x1, x2, x3]. Our purpose is to
demonstrate that m = (x1, x2, x3) ∈ AssR(R/I). To achieve
this, it is sufficient to apply Theorem 2.19. To see this, set
u1 := x2

1x
4
2x3, u2 := x3

1x
3
2x3, u3 := x4

1x
2
2x3, u4 := x1x

3
2x

4
3,

and u5 := x3
1x

2
2x

3
3. By choosing i1 = 1, i2 = 4, and

i3 = 5, one has C1 = {5}, C2 = {1}, and C3 = {4}.
This implies that |C1|=|C2|=|C3|=1, and also Ci ∩ Cj = ∅
for all i 6= j, that is, the conditions (i) and (ii) are proved.
Moreover, since r5,1 = 3, r1,2 = 4, and r4,3 = 4, and by
virtue of ui - x2

1x
3
2x

3
3 for each i ∈ {1, 2, 3, 4, 5} \ {1, 4, 5},

one can conclude that the condition (iii) holds. Therefore, m =
(x1, x2, x3) ∈ AssR(R/I). In general, there are

(
5
3

)
= 10

cases for choosing i1, i2, and i3. Direct computations show
that we can also consider the following cases:

(1) i1 = 1, i2 = 2, and i3 = 4.

(2) i1 = 2, i2 = 3, and i3 = 5.

3. Strong Persistence Property for
Monomial Ideals

Recall that an ideal I in a commutative Noetherian ring
S has the strong persistence property if (Ik+1 :S I) = Ik

for all k ∈ N. It is important to observe that if I has
the strong persistence property, then I has the persistence
property, see [21, Proposition 2.9] for more details. On the
other hand, there exist some monomial ideals which have the
persistence property, but do not necessary have the strong
persistence property. As an example, consider the ideal I
generated by monomials x1x2x3, x1x2x4, x1x3x5, x1x4x6,
x1x5x6, x2x3x6, x2x4x5, x2x5x6, x3x4x5, and x3x4x6 in the
polynomial ring R = K[x1, x2, x3, x4, x5, x6]. It follows now
from [7, Example 2.18] that I has the persistence property.
Furthermore, direct computation implies that (I3 :R I) 6= I2,
and so I has no strong persistence property.

In this section, we give some classes of monomial ideals
which satisfy the strong persistence property. To accomplish
this, we begin with the following definition.

Definition 3.1.(see [25, Definition 2.1]) Let I be a monomial
ideal in the polynomial ring R = K[x1, . . . , xn] with
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the unique minimal set of monomial generators G(I) =
{u1, . . . , um}. Then we say that I is a unisplit monomial ideal
if there exists i ∈ N with 1 ≤ i ≤ m such that each monomial
uj has no common factor with ui for all j ∈ N with 1 ≤ j ≤ m
and j 6= i. We call ui as split generator.

Example 3.2.(see [25, Example 2.2]) Consider the
monomial ideal

I = (x2
3x5x

3
6, x

3
1x

2
2x

4
4, x

6
1x

3
2x

4
7, x

2
2x

4
7x

5
4),

in the polynomial ring R = K[x1, x2, x3, x4, x5, x6, x7]. It
is easy to see that I is a unisplit monomial ideal of R with
x2

3x5x
3
6 is the split generator.

The following notion of separable monomial ideals is
needed in the sequel.

Definition 3.3.(see [25, Definition 2.3]) Let I be a monomial
ideal in the polynomial ring R = K[x1, . . . , xn] with
the unique minimal set of monomial generators G(I) =
{u1, . . . , um}. Then we say that I is a separable monomial
ideal if there exist i ∈ N with 1 ≤ i ≤ m and monomials g
and w in R such that w 6= 1, ui = wg, gcd(w, g) = 1, and for
all j ∈ N with 1 ≤ j 6= i ≤ m, gcd(uj , ui) = w.

Example 3.4.(see [25, Example 2.4]) Consider the
monomial ideal

I = (x1x2x
3
3x

5
4, x

2
1x

3
2x

4
3x

3
5x

5
6, x

2
1x2x

5
3x

2
5x6, x

3
1x

2
2x

6
3x

4
6),

in the polynomial ring R = K[x1, x2, x3, x4, x5, x6]. Then,
by setting

u1 := x1x2x
3
3x

5
4, u2 := x2

1x
3
2x

4
3x

3
5x

5
6,

u3 := x2
1x2x

5
3x

2
5x6, u4 := x3

1x
2
2x

6
3x

4
6,

i := 1 and w := x1x2x
3
3, one can easily check that I is a

separable monomial ideal of R.
Note that the set of unisplit monomial ideals and the set of

separable monomial ideals are disjoint.
In the sequel, we first state condition (]) on monomial

ideals, and we next emphasize that any monomial ideal that
satisfying condition (]) has the strong persistence property.

Definition 3.5.(see [25, Definition 2.7]) Suppose that I is
a monomial ideal in the polynomial ring R = K[x1, . . . , xn]
with G(I) = {u1, . . . , um}. We say that I satisfies condition
(]) if there exists a positive integer i with 1 ≤ i ≤ m such that

(uα1
1 · · ·u

αi−1

i−1 û
αi
i u

αi+1

i+1 · · ·u
αm
m uj :R ui) =

uα1
1 · · ·u

αi−1

i−1 û
αi
i u

αi+1

i+1 · · ·u
αm
m (uj :R ui)

for all j = 1, . . . ,m with j 6= i and α1, . . . , αm ∈ N0,
where ûαi

i means that this term is omitted and N0 is the set
of nonnegative integers.

The following theorems characterize any monomial ideal
that satisfying condition (]).

Theorem 3.6. (see [25, Theorem 2.9]) Let I be an ideal
satisfies condition (]). Then I is either a unisplit monomial
ideal or a separable monomial ideal.

Theorem 3.7.(see [25, Theorem 2.10]) Every unisplit
monomial ideal of R = K[x1, . . . , xn] satisfies condition (]).

Theorem 3.8. (see [25, Theorem 2.11]) Every separable
monomial ideal of R = K[x1, . . . , xn] satisfies condition (]).

Here, we describe the relation between condition (]) and the
strong persistence property in theorem below.

Theorem 3.9.(see [25, Theorem 3.1]) Let J be a monomial
ideal satisfies condition (]). We then have (Jk+1 :R J) = Jk

for all k ∈ N, i.e., J has the strong persistence property.
Proof. We will sketch the proof. Without loss of generality,

suppose that G(J) = {u1, . . . , um} is the unique minimal set
of monomial generators of J such that

(uα2
2 · · ·uαm

m uj :R u1) = uα2
2 · · ·uαm

m (uj :R u1)

for all j = 2, . . . ,m and α2, . . . , αm ∈ N0. We need only
show that (Jk+1 :R J) ⊆ Jk for all k ∈ N. Fix k ∈ N. As

J =

m∑
j=1

ujR, this implies that

(Jk+1 :R J) =

m⋂
j=1

(Jk+1 :R uj).

Note also that Jk+1 = Jk(

m∑
i=1

uiR) =

m∑
i=1

Jkui. It follows

that
(Jk+1 :R J) =

m⋂
j=1

m∑
i=1

(Jkui :R uj).

On the other hand, one can conclude that
m∑
i=1

(Jkui :R u1) = Jk +

m∑
i=2

(Jkui :R u1).

However, for i ∈ N with 2 ≤ i ≤ m, we have the following
equalities

(Jkui :R u1) =
∑

α1+···+αm=k,α1>0

(uα1
1 uα2

2 · · ·uαm
m ui :R u1)

+
∑

α2+···+αm=k

(uα2
2 · · ·uαm

m ui :R u1).

In addition, for i ∈ N with 2 ≤ i ≤ m, one can deduce that

(Jkui :R u1) =
∑

α1+···+αm=k,α1>0

uα1−1
1 uα2

2 · · ·uαm
m uiR

+
∑

α2+···+αm=k

uα2
2 · · ·uαm

m (ui :R u1).

This implies
m∑
i=1

(Jkui :R u1) = Jk. Since
m⋂
j=1

m∑
i=1

(Jkui :R

uj) ⊆
m∑
i=1

(Jkui :R u1), it follows that (Jk+1 :R J) ⊆ Jk.

Therefore (Jk+1 :R J) = Jk, as required.
We now turn our attention to superficial ideals, which have

been introduced in [27]. In fact, let I and J be two ideals in a
commutative Noetherian ring S. We say that J is a superficial
ideal for I if the following conditions are satisfied:

(i) G(J) ⊆ G(I), where G(L) denotes a minimal set of
generators of an ideal L.
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(ii)(Ik+1 :S J) = Ik for all positive integers k.

On the other hand, it is easy to see that an ideal I
has the strong persistence property if and only if I has a
superficial ideal. Therefore one can replace the concept of the
strong persistence property with superficial ideals. Here, we
introduce a class of monomial ideals which have superficial
ideals.

Theorem 3.10. (see [27, Theorem 5.10]) Suppose that I
is a square-free monomial ideal in a polynomial ring R =
K[x1, . . . , xn] over a field K with G(I) = {u1, . . . , um} such
that, for each i = 2, . . . ,m − 1, gcd(u1, u2, ui+1) = 1 and
(ui :R u1) divides (ui+1 :R u1). Then I has a superficial
ideal.

To illustrate Theorem 3.10, we provide the following
example.

Example 3.11.(see [27, Example 5.12]) Consider the
following monomial ideal

I = (x1x2x3x7x8, x1x2x4, x3x4x5x8, x3x4x5x6x7,

x4x5x6x7x8),

in the polynomial ring R = K[x1, x2, x3, x4, x5, x6, x7, x8]
over a field K. Now, set u1 := x1x2x3x7x8, u2 :=
x1x2x4, u3 := x3x4x5x8, u4 := x3x4x5x6x7, and u5 :=
x4x5x6x7x8. It is routine to check that, for each i = 2, 3, 4,
gcd(u1, u2, ui+1) = 1 and (ui :R u1) divides (ui+1 :R u1).
Now, Theorem 3.10 yields that the monomial ideal (u1, u2) =
(x1x2x3x7x8, x1x2x4) is a superficial ideal for I .

We continue this argument with an elegant result which
is related to the relation between normality and the strong
persistence property. To accomplish this, we first give the
definition of normal ideals, and next state the main theorem.

Definition 3.12.(see [27, Definition 6.1]) LetR be a ring and
I an ideal in R. An element f ∈ R is integral over I , if there
exists an equation

fk + c1f
k−1 + · · ·+ ck−1f + ck = 0 with ci ∈ Ii.

The set of elements I in R which are integral over I is the
integral closure of I . The ideal I is integrally closed, if I = I ,
and I is normal if all powers of I are integrally closed.

Theorem 3.13. (see [27, Theorem 6.2]) Every normal
monomial ideal has the strong persistence property.

We conclude this section by exploring the strong persistence
property for the cover ideals of some imperfect graphs. In fact,
according to [13], the cover ideals of perfect graphs have the
persistence property, but little is known for the cover ideals of
imperfect graphs. More recently, it has been shown in [28] that
the cover ideals of the following imperfect graphs satisfy the
strong persistence property:

(1) Cycle graphs of odd orders,

(2) Wheel graphs of even orders,

(3) Helm graphs of odd orders with greater than or equal to
5.

4. Normally Torsion-freeness for
Monomial Ideals

We first recall that an ideal I in a commutative Noetherian
ring S is called normally torsion-free if AssS(S/Ik) ⊆
AssS(S/I) for all k ∈ N.

The subsequent lemma guarantees that any power of a
normally torsion-free square-free monomial ideal, is also
normally torsion-free. Lemma 4.1. (see [29, Lemma 2.2])
Let I be a square-free monomial ideal in a polynomial ring
R = K[x1, . . . , xn]. If I is normally torsion-free, then, for all
positive integers s, Is is normally torsion-free.

In the following theorem, we introduce a class of monomial
ideals which are normally torsion-free.

Theorem 4.2.(see [22, Theorem 3.3]) Let T be a rooted
starlike tree on the vertex set {z, 1, . . . , n}with root z. Let I be
the monomial ideal corresponding to T which is generated by
the paths of maximal lengths such that every path is naturally
oriented away from z, and corresponding Alexander dual J .
Then the ideal J is normally torsion-free.

As an immediate consequence of Theorem 4.2, we obtain
the following corollary.

Corollary 4.3.(see [22, Corollary 3.4]) Suppose that T is
a rooted symmetric starlike tree on the vertex set V (T ) =
{z, 1, . . . , n} with root z such that every path is naturally
oriented away from z, and the following edge set

E(T ) = {(z, i), (kj + i, kj + k + i) | i = 1, . . . , k

and j = 0, . . . ,m− 1}

such that n = k(m+1) for some k ∈ N andm ∈ N0. Suppose
also that

Jm+1 :=

k⋂
i=1

(xz, xi, xk+i, . . . , xmk+i).

Then Jm+1 is normally torsion-free.
In order to demonstrate Theorem 4.7, one requires the

following theorem.
Theorem 4.4.(see [29, Theorem 3.3]) Let I be a monomial

ideal of R. Then I is normally torsion-free if and only if I∗ is.
The subsequent definition is essential for us to understand

Theorem 4.7.
Definition 4.5.(see [22, Definition 3.6]) An (k1, k2, . . . , kr)-

banana tree is a graph obtained by connecting one leaf of each
of an ki-star graph, for all i = 1, . . . , r, with a single root
vertex that is distinct from all the stars.

It should be observed that, for all i = 1, . . . , r, the number
ki in the definition of an (k1, k2, . . . , kr)-banana tree refers
to the total number of vertices in the associated star graph.
Furthermore, it is necessary to note that when k1 = · · · =
kr = k, we get an (r, k)-banana tree, as defined by Chen et al.
[30].

Here, we state two examples which illustrate our definitions.
Examples 4.6.(see [22, Examples 3.7])(i) Suppose that T is

the tree which is shown in figure below. One can easily see
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that T is a (4, 5, 7)-banana tree.

(ii) Assume that T is the tree which is shown in figure below.
It is routine to check that T is a (3, 5)-banana tree.

We are now ready to prove another main result in this
section. Theorem 4.7. (see [22, Theorem 3.8]) Suppose that
T is a rooted (k1, k2, . . . , kr)-banana tree on the vertex set
V (T ) = {i ∈ N : i = 1, 2, . . . , k1 + k2 + · · · + kr + 1}

with vertex 1 chosen as root, s0 := 0, si :=
∑i
t=1 kt, and the

edge set E(T ) is given by

{(1, si + 2), (si + 2, si + 3), (si + 3, si + j) :

i = 0, 1, . . . , r − 1 and j = 4, 5, . . . , ki+1 + 1}.

Suppose also that

I2 := (x1xsi+2xsi+3, xsi+2xsi+3xsi+j :

i = 0, 1, . . . , r − 1 and j = 4, 5, . . . , ki+1 + 1},

and J2 is the Alexander dual of I2. Then the ideal J2 is
normally torsion-free.

Figure 5. (4,5,7)-banana tree.

Figure 6. (3,5)-banana tree.

Proof. It follows from the hypothesis that

J2 =

r−1⋂
i=0

ki+1+1⋂
j=4

(
(x1, xsi+2, xsi+3) ∩ (xsi+2, xsi+3, xsi+j)

)
Suppose that R = K[xi : 1 ≤ i ≤

∑r
t=1 kt + 1] and

set qi := (xsi+2, xsi+3) for all i = 0, 1, . . . , r − 1. Thus
J2 =

⋂r−1
i=0 (qi + x1

∏ki+1+1
j=4 xsi+jR). Now, put p1 := x1R,

psi+2 := qi for all i = 0, 1, . . . , r − 1, and psi+j := xsi+jR
for all i = 0, 1, . . . , r− 1 and j = 4, 5, . . . , ki+1 + 1. One can
deduce that

J2 =

r−1⋂
i=0

(psi+2 + p1

ki+1+1∏
j=4

psi+j)

Let F be the following monomial ideal with k1 +k2 + · · ·+
kr − r + 1 variables

F :=

r−1⋂
i=0

(xsi+2R+ x1

ki+1+1∏
j=4

xsi+jR)

Accordingly, one can easily see that J2 is the expansion of
F . Our next aim is to show that F is normally torsion-free. To
do this, consider the graphG on the following vertex set V (G)

{si + 2 : i = 0, 1, . . . , r − 1} ∪ {1, si + j : i = 0, 1, . . . , r − 1 and j = 4, 5, . . . , ki+1 + 1},

and the following edge set E(G)

{{xsi+2, x1}, {xsi+2, xsi+j} : i = 0, 1, . . . , r − 1 and j = 4, 5, . . . , ki+1 + 1}.

Since
r−1⋂
i=0

(xsi+2R+ x1

ki+1+1∏
j=4

xsi+jR) =

r−1⋂
i=0

(xsi+2, x1) ∩
r−1⋂
i=0

ki+1+1⋂
j=4

(xsi+2, xsi+j),



International Journal of Theoretical and Applied Mathematics 2020; 3(1): 1-13 11

One has G = (V (G), E(G)) is a bipartite graph such that
F is the cover ideal of G. On the other hand, according to [15,
Corollary 2.6], it follows that F is normally torsion-free, and
Theorem 4.4 implies that the ideal J2 is also normally torsion-
free, as claimed.

More recently, by using the cover ideals of hypergraphs
and monomial localization of monomial ideals with respect
to monomial prime ideals, it has been shown the following
theorem.

Theorem 4.8.(see [31, Theorem 3.2]) Let T be a rooted tree.
Then I2(T )∨ is normally torsion-free.

We continue this argument with a notable result which is
devoted to the relation between normally torsion-freeness and
the strong persistence property.

Theorem 4.9.(see [27, Theorem 6.10]) Every normally
torsion-free square-free monomial ideal has the strong
persistence property.

In the sequel, we introduce four methods for constructing
new classes of monomial ideals which have normally torsion-
freeness. For this purpose, we begin with the first one.

Definition 4.10.(see [29, Definition 3.4]) A weight over
a polynomial ring R = K[x1, . . . , xn] is a function W :
{x1, . . . , xn} → N, and wi = W (xi) is called the weight
of the variable xi. Given a monomial ideal I and a weight
W , we define the weighted ideal, denoted by IW , to be the
ideal generated by {h(u) : u ∈ G(I)}, where h is the unique
homomorphism h : R → R given by h(xi) = xwi

i . For a
monomial u ∈ R, we denote h(u) = uW .

Example 4.11. Consider the monomial ideal
I = (x2

1x2x
6
3, x

3
2x4x

4
5) in the polynomial ring

R = K[x1, x2, x3, x4, x5]. Furthermore, let W :
{x1, x2, x3, x4, x5} → N be a weight overRwithW (x1) = 2,
W (x2) = 4, W (x3) = 2, W (x4) = 3, and W (x5) = 1. Thus,
the weighted ideal IW is given by IW = (x4

1x
4
2x

12
3 , x

12
2 x

3
4x

4
5).

The theorem below tells us that a monomial ideal is
normally torsion-free if and only if its weighted is normally
torsion-free.

Theorem 4.12. (see [29, Theorem 3.10]) Let I be a
monomial ideal of R, and W a weight over R. Then I is
normally torsion-free if and only if IW is.

We are ready to state the second method. Indeed, the
following lemma says that a monomial ideal is normally
torsion-free if and only if its monomial multiple is normally
torsion-free.

Lemma 4.13. (see [29, Lemma 3.12]) Let I be a monomial
ideal in a polynomial ring R = K[x1, . . . , xn] with G(I) =
{u1, . . . , um}, and h = xb1j1 · · ·x

bs
js

with j1, . . . , js ∈
{1, . . . , n} be a monomial in R. Then I is normally torsion-
free if and only if hI is normally torsion-free.

In order to provide the third method, one should recall the
definition of the monomial localization of a monomial ideal
with respect to a monomial prime ideal as has been introduced
in [32]. Let I be a monomial ideal in a polynomial ring
R = K[x1, . . . , xn] over a field K. We also denote by
V ∗(I) the set of monomial prime ideals containing I . Let
p = (xi1 , . . . , xir ) be a monomial prime ideal. The monomial

localization of I with respect to p, denoted by I(p), is the
ideal in the polynomial ring R(p) = K[xi1 , . . . , xir ] which
is obtained from I by applying the K-algebra homomorphism
R→ R(p) with xj 7→ 1 for all xj /∈ {xi1 , . . . , xir}.

We are now in a position to state the third method in
the following theorem. Theorem 4.14. (see [29, Theorem
3.15]) Let I be a monomial ideal in a polynomial ring R =
K[x1, . . . , xn], and p ∈ V ∗(I). If I is normally torsion-free,
then I(p) is so.

To express the fourth method, one requires the definition of
the deletion operator, as has been given in [33, P. 303]. Let
I be a monomial ideal in R = K[x1, . . . , xn] with G(I) =
{u1, . . . , um}. For some 1 ≤ j ≤ n, the deletion I \ xj is
formed by putting xj = 0 in ui for each i = 1, . . . ,m.

We finish this section with giving the fourth method in the
next theorem.

Theorem 4.15. (see [29, Theorem 3.21]) Let I be a square-
free monomial ideal in R = K[x1, . . . , xn], and 1 ≤ j ≤ n. If
I is normally torsion-free, then I \ xj is so.

5. Future Works

Several questions arise along these arguments for future
works. We terminate this paper with some open questions
which are devoted to the persistence property, strong
persistence property, normally torsion-freeness of monomial
ideals, and the unique homogeneous maximal ideal m =
(x1, . . . , xn) of R = K[x1, . . . , xn].

Let I be a square-free monomial ideal in a polynomial ring
R = K[x1, . . . , xn] over a field K, and m = (x1, . . . , xn)
be the unique homogeneous maximal ideal of R. Also let
AssR(R/Ik) = AssR(R/I)∪{m} for all k ≥ 2. Then can we
conclude that I has the strong persistence property?

Let I be a monomial ideal in a polynomial ring R =
K[x1, . . . , xn] and m = (x1, . . . , xn) be the graded maximal
ideal of R. Then, provide a necessary and sufficient condition
whether m ∈ AssR(R/Ik) for some positive integer k.

Suppose that I is a square-free monomial ideal in R =
K[x1, . . . , xn], G(I) = {u1, . . . , um},

⋃m
i=1 Supp(ui) =

{x1, . . . , xn}, and m = (x1, . . . , xn) is the graded maximal
ideal of R. If there exists a positive integer 1 ≤ j ≤ n such
that m \ xj ∈ AssR\xj

((R \ xj)/(I \ xj)k) for some positive
integer k, then can we deduce that m ∈ AssR(R/Ik)? 5

To understand the subsequent questions, we recall the
definition of polarization. (see [33, Definition 4.1]) The
process of polarization replaces a power xti by a product of
t new variables x(i,1) · · ·x(i,t). We call x(i,j) a shadow of
xi. We will use Ĩt to denote the polarization of It, will use
St for the new polynomial ring in this polarization, and will
use w̃ to denote the polarization in St of a monomial w in
R = K[x1, . . . , xn]. The depolarization of an ideal in St is
formed by setting x(i,j) = xi for all i, j.

Let I be a normally torsion-free non-square-free monomial
ideal in a polynomial ring R = K[x1, . . . , xn]. Then can we
deduce that Ĩ is a normally torsion-free monomial ideal?



12 Mehrdad Nasernejad: Associated Primes of Powers of Monomial Ideals: A Survey

Let I and J be two monomial ideals in R = K[x1, . . . , xn].
If J is a superficial ideal for I , then is J̃ a superficial ideal for
Ĩ?

6. Conclusion
In general, investigating the persistence property, strong

persistence property, and normally torsion-freeness of
monomial ideals have been of interest for many researchers.
Connecting to graph theory, path ideals, edge ideals, and cover
ideals of certain graphs are shown to have these properties,
but finding the other classes of monomial ideals with these
properties is going on. In this paper, we try to collect the latest
results in this field. Also, it is very interesting to find the other
applications of these notions in combinatorics as it has been
shown in [13], persistence property has some applications in
colorings of graph.
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