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Abstract: The absolutely new, simple and effective theory is proposed which differs from the classical Liapunov's theory of 

the movement steadiness. This theory permits to simplify and to speed up the search for the stable movement many times. The 

classical theory is very complex for using in the engineer practice and one does not bring success in many cases. It was 

necessary to create a theory that would be devoid of all shortcomings of the classical theory. In this work, it is proposed exactly 

such theory. Instead of the very complex Liapunov’s function we propose to use the variations calculation. This gives the 

invaluable winner in the speed and simplicity while searching for the stable movement. 
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1. Introduction 

Investigations in the sphere of the movement steadiness 

began in the end of 19 century in several works of E. Raus, 

A. E. Jukovskii, A. M. Liapunov and later were continued by 

N. G. Chetaev, D. R. Merkin, N. N. Krasovskii and others. 

The most serious results were obtained in the dissertation of 

A. M. Liapunov in 1892. He proposed the general 

formulation for the stable motion problem. 

Up to now, Liapunov's method of the positive-definite 

functions has remained the most common. However, this 

method has serious shortcomings. Liapunov's method is 

based on the sufficient conditions of the stable motion. But, it 

is known that the sufficient conditions almost always are less 

effective for searching the solution for any problems than the 

necessary conditions. And if by means of sufficient 

conditions it is impossible to solve the problem, then it does 

not mean that the solution does not exist. As the necessary 

conditions of the stable motion (in accordance with its 

definition) are regarded in assumption of existence of the 

stable motion, these conditions almost always permit to find 

this stable motion if one exists. Whereas by means of the 

sufficient conditions it often turns out impossible in principle 

to find the desirable solution for the problem. 

In this paper, a new theory is proposed permitting to find 

the stable motion quite easily and more quickly. On the other 

hand, the classical Liapunov's theory often does not permit to 

find asymptotical steadiness even if one exists. 

2. Method 

2.1. Statement of the Problem 

Let there be given a process in n -space defined by the 

vectorial differential equation 

   = ( ( ), ),
dy

Y y t t
dt

                          (1) 

where ( , )Y y t  is the known vector-function satisfying 

requirements ensuring existence of the solution of the 

equation (1), 1( )= ( ( ),..., ( )ny t y t y t  is the vector-function of 

the phase-coordinates y ( ), =1,... .i t i n And let the partial 

derivatives 
2

2
 , , =1,...,i

k

Y
i k n

y

∂
∂

 exist and be continuous. 

And let ( )z t  be some solution of the equation (1). It is 

required to estimate the steadiness of ( )z t  with respect to the 

small perturbations ( )x t : 

( )= ( )- ( ).x t y t z t  
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Introduce this equality into equation (1) and rewrite it via 

coordinates 

1 1 + = ( + ,..., + , ), =1,..., .     i i
i n n

dz dx
Y z x z x t i n

dt dt
  (1a) 

The investigation of the steadiness can be performed 

directly on the basis of the equations (1a) or after expansion 

of these equations in rows on the small parameter ( )x t  in a 

neighbourhood of solution ( )z t : 

1

+ = ( , ) + (  ) + , =1,..., ,

n
i i i

i z k i
kk

dz dx Y
Y z t x Y i n

dt dt x−

∂
∆

∂∑  

where iY∆  is the sum of the members above the first order. 

As ( )z t  is the solution of the equation 

= ( , ),
dz

Y z t
dt

                                 (2) 

we receive the following perturbed equations 

z

1

= ( ) + , =1,...,
dt

n
i i

k i
kk

dx Y
x Y i n

x=

∂
∆

∂∑              (3) 

By means of urge towards ( ) 0x t →  in the equations (3) or 

(1a) one can judge about the steadiness of the solution ( )z t  

of the equation (2). 

Using only the linear terms of the equations (3) seldom 

brings success. The analysis of the (3) usually is done by 

means of the Liapunov's functions ( )V x . 

Already for more than 100 years the following Liapunov's 

theorem is used in the engineer practice [1, с. 37]: 

"If for the differential equation of the perturbed motion it 

is possible to find a positive-definite function ( ) 0V x > , such 

that the full derivative on time ( )Vɺ  will be negative-definite 

( 0V <ɺ ) or 0V ≡ɺ , then non-perturbed motion is stable." 

If in Liapunov's theorem the last requirement 0V ≡ɺ  is 

excluded, then it defines the asymptotical steadiness. But the 

last requirement does not define stability from the practical 

point of view. 

Among shortcomings of the classic theory [1-9], it is 

necessary to notice, first of all, that searching for the suitable 

function ( )V x  is too much trouble. There is no guarantee to 

find the pair  (V(x)>0, V(x)<0)ɺ . Besides that, the elucidation 

of the sign-definite functions is also very complex. 

In this paper, it is proposed to replace the very complex 

problem of searching for Liapunov's function with a very 

simple problem of searching maximum of function Vɺ . 

Before offering the new simple and effective theory of the 

motion stability, we shall demonstrate the principal problems 

of the classic Liapunov's method by the typical example. 

Example 1. Let us consider the nonlinear differential 

equations of the perturbed motion [1, p. 54-55]: 

2 3
1 1 2 2 1 2 2 = + ,   x = + x ax bx cx x exɺ ɺ             (4) 

It is required to define restrictions of the parameters 

( , , ,a b c e ) of a real dynamic system that will ensure 

asymptotical steadiness of the zero-solution 1 2 0x x= =  of 

the equations (4) with respect to small perturbations 1 2( , )x x . 

In [1, p. 54-55] Liapunov's function is searched for in the 

form 

2 2
1 1 2 2

1
=  ( +2 + )

2
V x x x xλ µ                (5) 

where λ  and µ  are chosen so that 0V >  and 0V <ɺ . For 

the quadratic form to be positive-defined, it is necessary and 

sufficient that the diagonal minors of matrix 

1

λ µ
µ

 

be positive. It gives 2( > 0,  )λ λ µ> . 

The calculation of Vɺ  for equations (4) gives 

2 2 4
1 1 2 2

3 2 3
1 2 2 1 2 1 2

= + ( + ) + +

( + + + ).

V ax b c x x ex

ax x bx cx x ex x

λ λ

µ

ɺ

 

If 0µ ≠  then the function Vɺ is sign-variable. In case 

0µ =  we receive the quadratic form Vɺ  for variables 

2
1 2 2 ( , = )x x x : 

2 2 4 2 2
1 1 2 2 1 1 2 2= + ( + ) + + ( + ) +V ax b c x x ex ax b c x x exλ λ λ λ=ɺ  

and Silvestor's criterion for these variables leads to the 

following inequalities: 

2   < 0, 4  - (  + )  > 0a ae b cλ λ λ                (6) 

After definition of the roots of the square equation 

2 4  - (  + )  = 0,ae b cλ λ  

We have the following limitations of the parameters 

1 2<0, <0,  < ,  <  < a e bc ae λ λ λ             (7) 

where 1λ  and 2λ  are the positive numbers. 

For parameters satisfying (7), the form V  will be the 

define-positive and the form Vɺ  be define-negative, and, 

under Liapunov's theorem, the asymptotical steadiness of the 

zero-solution of the equations (4) takes place only about 

variables 1x  and 2
2x , while in [1] the attempt to find the 
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asymptotical stability straight for the variables 1 2( )x x  failed. 

Notice, though, that if in (5) we take 1, 0λ µ= =  then we 

receive a different Liapunov's function 
2 2
1 2

1
S= ( + )

2
x x  which 

is also the define-positive ( 0S > ) and the function 0S <ɺ  in 

relation to 
2

1 2( , )x x  as it follows from (6). And consequently 

in this case, we also receive the asymptotical stability in 

relation to
2

1 2( , )x x , but not in relation to 1 2( , )x x . And now 

we find absolutely different values of parameters: 

2 <0,  <0,  ( + ) < 4a e b c ea .                   (8) 

So, absolutely different stability conditions ((7) and (8)) 

were found on the base of the different Liapunov's functions. 

This example demonstrates the serious difficulties which 

appear while searching for the asymptotical stability in 

relation to the desirable variables 1 2( , ).x x  

2.2. The New Theory of Stability of Dynamic Systems 

Consider a really different approach to the problem of 

steadiness based on the variational calculation [10] without 

shortcomings of the classic theory of Liapunov functions. 

Let in n -space X  be defined half-metrics 
2

1

1

2

n

k

k

S x

=

= ∑  

and a small quantity 0ε > . Consider the solution of equation 

(3) (or (1a)) in a small ε -environment of zero in X : 

2

1

1
=  . 

2

n

k

k

S x ε
=

≤∑                         (9) 

Definition 1. We say that a solution of the equation (1) is 

ε -stable if there exists the small quantity 0ε >  and a 

moment 1 1 (0 < < )t t ∞  that for all 1t t>  the trajectory ( )x t  

remains in the sphere (9). And we say that a movement is 

asymptotically stable if, for any small quantity 0ε > , the 

trajectory ( )x t  aspires to zero and reaches value ( )  0 x t ≡  in 

(9). 

Assertion 1. Suppose that the problem of the movement 

steadiness has a positive solution. As it follows from 

Definition 1, the object moves inside sphere (9) in the space 

X  In this case, it is obvious that ( ) =(grad  S , )  0S x x ≤ɺ ɺ  

and function ( )S xɺ  reaches its maximum in some point x  in 

(9) for 1t t> , and we talk in this case about ε -stable. If this 

maximum is reached in the point 0x =  we talk about the 

asymptotical stability. 

The Assertion 1, in essence, proves the following theorem. 

Theorem 1. For a solution of the dynamic system to be ε -

stable to the small perturbations it is necessary that the full 

derivative on time ( )S xɺ  of the function ( )S x , calculated 

with regard to the differential equations (3) or (1a), reach 

maximum in the sphere (9), and in the case of the 

asymptotical stability it is necessary that maximum ( )S xɺ  be 

reached in the point 0x = . 

Consequence 1. For the asymptotical stability of zero-

solution of the equations (3) or (1a) relative to the coordinate 

( )ix t , it is necessary that, in the small environment of the 

point 0x =  and in this point, the following conditions take 

place: 

2

2

S
 0,

ix

∂ ≤
∂

ɺ

 [10], p. 35-36], 0,( 1,..., )
i

S
i n

x

∂ = =
∂

ɺ

. 

Consequence 2. For the asymptotical stability of zero-

solution of the equations (3) or (1a) relative to the coordinate 

ix , it is necessary and sufficient that, in the small 

environment of the point 0x =  and in this point, the 

following conditions be satisfied: 

2

2

S
< 0,

ix

∂
∂

ɺ

 [10, p. 35-36], 0, ( 1,..., )
i

S
i n

x

∂ = =
∂

ɺ

 

The theorem 1 allows to decide the steadiness problem for 

the nonlinear dynamic systems far simpler and quicker than 

Liapunov's method. The proposed new method does not 

require very complex searching for Liapunov's functions and 

one reduces the stability problem to a very simple problem 

searching for max S( ) nx R
x∈
ɺ . Notice that in Theorem 1, the 

character of urge 0x →  does not matter, therefore Theorem 

1 contains in itself Krasovskii's theorems, [1, p. 42-46]. 

2.3. Demonstration of Effectiveness of This Method 

Demonstrate now by Example 1 the possibilities of the 

proposed new theory. We shall search for conditions of the 

asymptotical stability about the natural variables 1 2( , )x x , 

which were not found in [1, p. 54-55]. 

At the beginning, we define function Sɺ : 

2 2 4
1 1 2 2 1 1 2 2 =  +  =   + ( + ) + S x x x x ax x x b c exɺ ɺ ɺ

  (10) 

and calculate the first particular derivative defining extremals 

in the considered problem: 

2
1 2

1

 = 2  + ( + )  = 0
S

ax b c x
x

∂
∂

ɺ

,                 (11) 

3
1 2 2

2

 = 2 ( + ) + 4 = 0
S

x x b c ex
x

∂
∂

ɺ

.              (12) 

In consequence of assumption about existence of 

maximum of the function Sɺ , the second partial derivative 

must be non-positive [10, p. 35-36]: 

2

2
1

   = 2  0  
S

a
x

∂ ≤
∂

ɺ

,                           (13) 
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2
2

1 22
2

 = 2[ ( + ) + 6 ]  0.
S

x b c ex
x

∂ ≤
∂

ɺ

             (14) 

From (13), we have 0a ≤ . And the substitution of the 

extremal (11) into (14) points out that for small x  and in the 

point 0x =  attitude is fulfilled 

2 2
2
22

2

( )
 = [6  - ]  0,

2

S b c
x e

ax

∂ + ≤
ɺ

               (15) 

Hence, it follows 

212  ( + ) .  ae b c≥                         (16) 

If also to substitute the second extremal (12) in (14), we 

receive 

2
28   0,ex ≤  

and hence 0e ≤ . Also notice that, from the extremals (11) 

and (12), it follows 
24 =( + )ae b c . 

Thus, on the base of the proposed new method, the 

asymptotical stability was found very simply in relation to 

the desirable variables 1 2( , )x x , Compare the offered new 

theory with the classic Liapunov's theory on two more 

examples. 

Example 2 [1, p. 46 ]. Consider the following equations of 

the perturbed motion: 

1
1 22 2

1

1 2
2 2 2 2 2

1 1

2
  = -  + 2 , 

(1 )

2 2
  = -  .

(1 ) (1 )

x
x x

x

x x
x

x x

+

−
+ +

ɺ

ɺ  

So as to search for the asymptotical steadiness, a very 

exotic Liapunov's function was found in [1, p. 46] probably, 

with difficulty 

2
21
22

1

 =  + ,
(1 )

x
V x

x+
 

However, without taking much effort in search of the 

suitable Liapunov's function, the conditions of stability of 

this system can be found very easily due to the proposed 

variational method. 

Indeed, the asymptotical stability of the state 1 2 0x x= =  

follows from inequalities 

2

2
 = -4 < 0, =1,2.

i

S
i

x

∂
∂

ɺ

 

Example 3, [1, p. 67-68]. Let the body be in rest in viscous 

surroundings and let then the body be troubled by a vector-

moment 

1  = - aM bω ω− , 

where a  and b  are parameters and ω  is a speed of rotation 

of the perturbed body. In this case, the dynamic equations are 

following 

1
z

1
z

1
y

I
  =  - ,

I
 =  - , 

I
 =  - ,

y z a
x y x

x x

az x
y x y

y y

x y a
z x z

z z

I b

I I

I b

I I

I b

I I

ω ω ω ω ω

ω ω ω ω ω

ω ω ω ω ω

−

−

−

−

−

−

ɺ

ɺ

ɺ

        (17) 

2 2 2 2
z

1 1
 Supposing S= (  +  + ) = ,

2 2
x yω ω ω ω  we receive the 

function 

1 2 1 2

1 2

 = + +  =  - - - 
x ya az xY z

x x y y z z x y z x x y z y x y z
x x y y z

a
z

z

I II II I b b
S

I I I I I

b

I

ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω

ω ω

− −

−

−

−−−
+ +ɺ ɺ ɺ ɺ

 

Calculate the first and second particular derivatives about the variables  ( , , ).x y zω ω ω  As this problem is symmetric for these 

variables so it is sufficient to calculate, for example, the derivative only about xω . We receive the following extremal for xω : 

3 3 1 2 3

2 3

- [( 1) 2 ] - [( 1)  

- [( 1) 0

 

y z a a az x
y z x y z y x

x x x y y

x y a
y z z x

z z

I I I IS b b
a ax

I I I I

I I b
a

I I

ω ω ω ω ω ω ω ω ω ω ω
ω

ω ω ω ω ω

− − −

−

− −∂ = − + + − +
∂

−
− =

ɺ
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The second partial derivative about xω  is following 

2
5 4 3 2 3 2 1 5 2 2 3 2

2

5 2 2 3 2

=- [( 1)( 3) 3( 1) 2( 1) 2 ]  [( 1)( 3) ( 1) ]

[( 1)( 3) ( 1) ]

 

a a a a a a
x x x x y y

x yx

a a
x z z

z

S b b
a a a a a a a

I I

b
a a a

I

ω ω ω ω ω ω ω ω ω ω ω ω
ω

ω ω ω ω ω

− − − − − −

− −

∂ − − + − + − + − − − + −

− − − + −

ɺ

 

Hence, we see that, for 3a > , in a small neighbourhood of 

0ω =  the second derivative on xω  is negative 
2

2
(  < 0)

x

S

ω
∂
∂

ɺ

. 

Therefore, the function Sɺ  reaches maximum in the point 

0ω = . In consequence of the full symmetry of movement 

equations, the same result takes place also for other variables 

( ,y zω ω ). So, in this problem, there is the asymptotical 

stability of the state 0ω =  in case of 3a > . Notice, 

however, that, by means of the Liapunov's method in [1, с. 

67-68], it was found asymptotical stability for 1a > , but it 

was a mistake. 

Notice. The proposed new method does not require 

expanding of the perturbed differential equations in rows 

and permits to receive the function Sɺ  directly on the basis 

of the equations 

1 1  = ( + ,..., + , ) -  , =1,..., . i i
i n n

dx dz
Y z x z x t i n

dt dt
 

3. Result 

The absolutely new, simple and effective theory is 

worked out which differs from the classical Liapunov's 

theory and from all known theories [1-9] of the movement 

steadiness. 

4. Discussion 

This theory permits to simplify and to speed up the 

search for the stable movement many times. It was 

demonstrated on the examples that the proposed new 

theory of the movement stability is far simpler and more 

effective than the classic Liapunov's theory and all its 

known modifications and improvements [1-9]. 

5. Conclusions 

This new theory gives the invaluable winner in the speed 

and simplicity searching the stable movement. By means of 

this new theory, engineers now can for some minutes or 

hours to define the asymptotical stability of any nonlinear 

dynamical systems, while up to now this work required often 

many hours, weeks or months, because the searching 

Liapunov’s function was very complex. 
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