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Abstract: In this paper, we present an integrated production-distribution (P-D) model which considers rail transportation to 

move deteriorating items. The problem is formulated as a mixed integer programming (MIP) model, which could then be 

solved using GAMS optimization software. A hybrid genetic algorithm-simulated annealing (GA-SA) is developed to solve the 

real-size problems in a reasonable time period. The solutions obtained by GAMS are compared with those obtained from the 

hybrid GA-SA and the results show that the hybrid GA-SA is efficient in terms of computational time and the quality of the 

solution obtained. 
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1. Introduction 

A supply chain (SC) may be considered as an integrated 

process in which a group of several organizations, such as 

suppliers, producers, distributors and retailers, work 

together to acquire raw materials with a view to converting 

them into end products which they distribute to retailers [1]. 

The two core optimization problems in a SC are production 

and distribution planning. In the production planning, 

decisions such as hiring and firing of labors, regular time 

and overtime production, subcontracting and machine 

capacity levels are made for a definite planning horizon (i.e. 

usually a one year period). Whereas, in the distribution 

planning decisions relates to determining which facility 

(ies) would supply demands of which market(s) [2]. 

Unlike traditional supply chains with members 

competing to reduce their individual costs, the overall cost 

of the entire supply chain is minimized in a cooperative 

supply chain. The savings from cooperation may be shared 

among the members, while a lower average cost and a 

lower cost variation is materialized for individual 

members. 

In this study, a multiple-product, multiple time-period P-

D model with consideration of rail transportation to move 

deteriorating items is developed. Thus, we briefly review 

the related literature of the mentioned problem. The 

followings are the previous studies on multiple-product, 

multiple time-period. Saracoglu et al, formulated an 

approach for multi-product multi-period (Q, r) inventory 

models that calculates the optimal order quantity and 

optimal reorder point under the constraints of shelf life, 

budget, storage capacity, and ‘‘extra number of products’’ 

promotions according to the ordered quantity [15]. First, the 

problem is modelled as an integer linear programming 

(ILP) model. Next, a genetic algorithm (GA) solution 

approach with an embedded local search is proposed to 

solve larger scale problems. The results indicate that the 
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proposed approach yields high-quality solutions within 

reasonable computation times. Pasandideh et al, considered 

a bi-objective optimization of a multi-product multi-period 

three-echelon supply-chain-network problem [13]. The 

network consists of manufacturing plants, distribution 

centers (DCs), and customer nodes. The majority of the 

parameters in this network including fixed and variable 

costs, customer demand, available production time, set-up 

and production times, all are considered stochastic. The 

goal is to determine the quantities of the products produced 

by the manufacturing plants in different periods, the number 

and locations of the warehouses, the quantities of products 

transported between the supply chain entities, the inventory 

of products in warehouses and plants, and the shortage of 

products in periods such that both the expected and the 

variance of the total cost are minimized. The problem is 

first formulated into the framework of a single-objective 

stochastic mixed integer linear programming model. Then, 

it is reformulated into a bi-objective deterministic mixed 

integer nonlinear programming model. To solve the 

complicated problem, a non-dominated sorting genetic 

algorithm (NSGA-II) is utilized next. As there is no 

benchmark available in the literature, another GA-based 

algorithm called non-dominated ranking genetic algorithm 

(NRGA) is used to validate the results obtained. Some 

numerical illustrations are provided to show the 

applicability of the proposed methodology and select the 

best method using a t-test along with the simple additive 

weighting (SAW) method. Priyan et al, considered a 

distributor and a warehouse consisting of a serviceable part 

and a recoverable part supply chain problem in which there 

are several products, the distributor has limited space 

capacity and budget to purchase all products [14]. A 

mathematical model is employed to optimize the order 

quantity, lead time and total number of deliveries with the 

objective of minimizing system total cost. A simple 

Lagrangian multiplier technique to solve the model which is 

a constrained non-linear programming. At the end, 

numerical and sensitivity analysis are given to show the 

applicability of the proposed model in real-world product 

returns inventory problems. 

In addition, rail transportation has been widely used in 

supply chain management (SCM). Yaghini et al, presented a 

comprehensive review of multi-commodity network design 

(MCND) problems modeling, their applications in rail freight 

transportation planning, and solution methods which have 

been developed to solve them [16]. Hajiaghaei-Keshteli et al, 

proposed an integrated production and transportation model, 

which considers rail transportation to deliver orders from a 

facility to the customers [5]. The problem is to determine 

both production schedule and rail transportation allocation of 

orders to optimize customer service at minimum total cost. 

Different destinations of the trains, trains' capacities, and 

different transportation costs are the main aspects of the work 

which are considered. A heuristic, two meta-heuristics and 

some related procedures are developed to cope with the NP-

hardness of the problem. Besides, Taguchi experimental 

design method is utilized to set and estimate the proper 

values of the algorithms' parameters to improve their 

performance. For the purpose of performance evaluation of 

the proposed algorithms, various problem sizes are employed 

and the computational results of the algorithms are compared 

with each other. Besides, Hajiaghaei-Keshteli et al, 

developed the integrated scheduling of production and rail 

transportation. The problem is to determine both production 

schedule and rail transportation allocation of orders to 

optimize customer service at minimum total cost [6]. Some 

procedures and heuristics are utilized to encode the model in 

order to address it by two capable meta-heuristics: GA, and 

Keshtel algorithm (KA). Taguchi experimental design 

method is utilized to set and estimate the proper values of the 

algorithms’ parameters to improve their performance. 

Besides, various problem sizes are employed and the 

computational results of the algorithms are compared with 

each other.  

Over the past few days, there have been fruitful efforts 

for considering deteriorating items in SCM. Ghiami et al, 

regarded a single-manufacturer, multi-buyer model for a 

deteriorating item with finite production rate [3]. The 

authors relaxed the assumption on the production capacity 

and found the average inventory of the supplier. It is 

shown that in case the production rate is not high, the 

existing models may not be sufficiently accurate. Also a 

sensitivity analysis is conducted to show how the model 

reacts to changes in parameters. Maihami et al, considered 

the problem of replenishment policy and pricing for non-

instantaneous deteriorating items subject to promotional 

effort [12]. A price dependent stochastic demand function 

in which shortages are allowed and partially backlogged, 

is adopted. The major objective is to simultaneously 

determine the optimal selling price, the optimal 

replenishment schedule, and the optimal order quantity to 

maximize the total profit. An algorithm is employed 

obtain the optimal solution. Finally, the numerical 

example is extended by performing a sensitivity analysis 

of the model parameters and discusses specific managerial 

insights. Zhang et al, developed a one-manufacturer-one-

retailer supply chain model for deteriorating items with 

controllable deterioration rate and price-dependent 

demand in which both players cooperatively invest in 

preservation technology to reduce deterioration [17]. 

Algorithms are designed to obtain the pricing and 

preservation technology investment strategies in both 

integrated and decentralized scenarios. Numerical 

simulations and sensitivity analysis of the equilibrium 

strategies and coordinating results on key system 

parameters are given to verify the effectiveness of the 

contract, and meanwhile get some managerial insights. 

This paper is organized as follows. Section 2 explains the 

characteristics of the problem; in Section 3, the mathematical 

model is developed and Section 4 introduces a hybrid GA-

SA to solve the model; computational results and discussion 

are included in Section 5. Finally, conclusions for future 

research are presented in Section 6. 
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2. The Problem Definition and 

Assumptions 

In this section, we explain the definition of the problem 

and basic assumptions to better understand the problem. As 

mentioned before, in this paper we consider a multiple-

product, multiple time-period production-distribution model 

in SCM. The aim is to make optimal decisions about the 

optimal amount of products in each time-period, optimal 

sequence of job processing in production line to prepare final 

products, the way of using available facilities to transport 

products from production line to customers with 

consideration of constraints (i.e. warehouse capacity, 

transportation, customer satisfaction, perish ability of 

products). Strategic decisions (i.e. routing, determining the 

railway) and operational decisions (i.e. amount of production 

and storage) are also regarded. 

The considered assumptions of the problem are as follows: 

� Transportation of products is performed using rail fleet. 

� Developing the rail transportation network using the 

construction of new rails during the period of decision 

making is not allowed. 

� It is possible to change rail roads in each period. 

� The number and the capacity of the trains are 

predetermined. 

� The scheduling system considered in the production 

line, is single-machine. 

� Products can be stored in the warehouses of the 

production part. 

� Products are deteriorating items which have different 

life time. 

� Delivery time of products to customers are limited and 

predetermined. 

� Penalty cost is considered when products deliver to 

customer after the determined due date.  

3. The Mathematical Model 

The following notations are used for mathematical 

formulation of the proposed model: 

Indices: 

i,j 
The index of job/product (in fact, each product is related to the specific job, so the index of job and 

product are the same) 
(1 i N≤ ≤ ) 

l The index of rail road (1 l L≤ ≤ ) 

k The index of train (1 k K≤ ≤ ) 

,c c
⌢

 The index of customer (1 ,c c C≤ ≤⌢ ) 

,t t
⌢

 The index of time period (1 ,t t T≤ ≤
⌢

) 

Parameters: 

train

cc
dis⌢

 Rail distance between customer c and customer c
⌢

 
travel

cc
tm⌢

1 1 0train train

c c

c c

dis dis
 = = 
 
∑ ∑  

Time period between 

customer c and customer c
⌢

 

jctdem  Demand of customer c for product j in period t   
traincap  Capacity of train transportation   
invcap  Capacity of storing products   

proc

jtm  Enough time for processing a unit of product j   

jvol  Volume of product j   

jctdd  Delivery time of product j to customer c in period 

t 
  

jed  The time period before expiry date of product j   

jctc  Penalty for delivery of product j to customer c in 

period t 
  

η  The cost of train transportation in the distance   

M A big number   

Variables: 

ccα⌢
 Binary variable which is equal to 1 if there is a rail road that connects customer c to customer c

⌢
 

kltλ
 Binary variable which is equal to 1 if train k is assigned to rail road l in period t 

ccltz ⌢
 Binary variable which is equal to 1 if rail road l leaves customer c to visit customer c

⌢
in time period of t 

ijtx  Binary variable which is equal to 1 if job i is processed before job j in period t 

iktβ
 Binary variable which is equal to 1 if train k transport product i in period t 

clktγ
 Binary variable which is equal to 1 if train k which is belonged to rail road l, passes customer c in period t 

ccltµ⌢
 

Number of assigned trains to rail road l which leave customer c to visit customer c
⌢

in period t 
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jtst  Initialization time of processing the job j in period t 

jtct  Termination time of processing the job j in period t 

jtN  The number of product j which is processed in period t 

jckty  The number of product j which are delivered by train k to customer c in period t 

jtinv  Inventory of product j in the warehouse in period t 

cktdt
 The time that train k leaves customer c in period t 

jctdlt  Amount of tardiness in delivery of product j to customer c in period t 

jctLC
 

Penalty for delivery of product j to customer c in period t 

The mathematical formulation of the proposed model is as 

follows: 

, , , , ,

( )
jct cc cclt

j c t c c l t

Min cost LC disη µ= + × ×∑ ∑ ⌢ ⌢

⌢  

s.t: 

ijt jit

j j

x x=∑ ∑  ,i t∀                            (1) 

1ijt

j

x =∑  ,i t∀                                 (2) 

proc

jt jt jt jct st N tm= + ×  ,j t∀                        (3) 

(1 )jt ijt itst M x ct+ − ≥  , 1,i j t∀ >                      (4) 

cclt cclt

c c

z z=∑ ∑⌢ ⌢

⌢ ⌢

 , ,c l t∀                                (5) 

,

1cclt

c l

z =∑ ⌢

⌢

 ,c t∀                                      (6) 

1 (1 )kt jkt jtdt M ctβ+ − ≥  , ,j k t∀                         (7) 

(2 )
travel

ckt cclt klt ckt ccdt M z dt tmλ+ − − ≥ +⌢ ⌢ ⌢  , 1, ,c c k t∀ >⌢
         (8) 

1 1 1

,

j j jck

c k

inv N y= −∑  j∀                            (9) 

( 1)

,

jt j t jt jckt

c k

inv inv N y−= + −∑  , 1j t∀ >                   (10) 

, , 1

jt ed

jt jckt

c k t t

inv y

+

= +
≤ ∑ ⌢

⌢

 , jj t T ed∀ ≤ −                       (11) 

, , 1

T

jt jckt

c k t t

inv y
= +

≤ ∑ ⌢

⌢

 , jj t T ed∀ > −                       (12) 

(1 )jct jkt cktdlt M dtβ+ − ≥  , , ,j c k t∀                    (13) 

( )jct jct jct jctLC dlt dd c≥ − ×  , ,j c t∀                   (14) 

jckt jkty M β≤ ×  , , ,j c k t∀                            (15) 

jckt clkt

j l

y M γ≤ ×∑ ∑  , ,c k t∀                          (16) 

2

klt cclt

c

clkt

zλ
γ

+
≤

∑ ⌢

⌢

 , , ,c l k t∀                           (17) 

1klt

l

λ ≤∑  ,k t∀                                        (18) 

,

cclt cc

l t

z M α≤ ×∑ ⌢ ⌢  ,c c∀ ⌢
                             (19) 

jckt jct

k

y dem≥∑  , ,j c t∀                              (20) 

inv

jt j

j

inv vol cap× ≤∑  t∀                            (21) 

,

train

jckt j

j c

y vol cap× ≤∑  ,k t∀                           (22) 

(1 )cclt cclt klt

k

M zµ λ+ − ≥∑⌢ ⌢  , , ,c c l t∀⌢                       (23) 

, , , ,jt jt ckt jct jctst ct dt dlt LC o≥  , , ,j t c k∀                    (24) 

{ }, , , , , 0,1cc klt cclt ijt ikt clktz xα λ β γ =⌢ ⌢  ˆ, , , , , , .c c i t j k l∀        (25) 

The objective function minimizes the transportation cost, 

as well as tardiness cost of product delivery. The processing 

condition of each job and the sequence of processing jobs are 

represented in constraint (1) and constraint (2), respectively. 

Constraint (3) and constraint (4) expresses the initialization 

time and termination time of jobs, respectively. Constraint (5) 

guarantees that if a rail road is entered to a place, it must be 

leaved there. Constraint (6) assumes that each customer must 

be visited only by a rail road. The time which trains leave the 

production part and customers are shown in constraint (7) 

and constraint (8), respectively. Constraint (9) and constraint 

(10) delineate the relationship between inventories. 

Constraint (11) and constraint (12) show that products are 

deteriorating items. Amount of tardiness from due date in 

delivery of products and penalty are depicted in constraint 

(13) and constraint (14), respectively. According to the 

constraints (15-17), it is possible to deliver a product to 

customer c by train k if the train k transport the mentioned 

product from its production part and the rail road which is 

related to the mentioned train visits customer c. constraint 

(18) explains that it is not permitted to assign a train to more 

than one rail road during a period of time. Constraint (19) 

expresses that it is not possible to visit the rail road which 
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connects node (customer) c to node (customer) c
⌢

, unless the 

rail road between these two nodes is made. Constraint (20) 

assures the satisfaction of demand. Constraint (21) and 

constraint (22) explains that the capacity of storage and the 

capacity of transportation must not be exceeded from the 

considered limit. The numbers of allocated trains to rail road 

l in time period t which leave customer c to customer c
⌢

are 

represented in constraint (23). Constraints (24-25) represent 

the range of model variables. 

4. Hybrid GA-SA Algorithm 

4.1. Simulated Annealing 

SA which was firstly developed by Kirkpatrick et al, is 

considered as a local search algorithm [9]. It is based on the 

analogy between the process of finding a possible best 

solution of a combinatorial optimization problem and the 

annealing process of a solid to its minimum energy state in 

statistical physics. SA is similar to hill climbing or gradient 

search with a few modifications but it does not require the 

optimization function to be smooth and continuous. The SA 

algorithm is an iterative search procedure based on a 

neighborhood structure. The quality of the annealing solution 

is sensitive to the way of selecting the candidate (trial) 

solutions. Thus, a neighborhood structure, including a 

generation mechanism and its set size, is crucial for the 

performance of the SA algorithm. The SA algorithm with a 

larger neighborhood performs better than that with a smaller 

one, i.e., a larger neighborhood makes it likely to reach out 

over a much broader space of the solution set. The 

neighborhood structure provides global asymptotic 

convergence for an arbitrary solution. Hence, there exists at 

least one global optimal solution that can be reached in a 

finite number of iterative transitions. The process of 

searching begins with one initial random solution. A 

neighborhood of this solution is generated using a 

neighborhood move rule and then the cost between 

neighborhood solution and current solution can be found, 

according to Eq. (26). 

1i i
C C C −∆ = −                                (26) 

Where C∆ , Ci and Ci-1 represent change amount between 

costs of the two solutions, neighborhood solution and 

current solution, respectively. If the cost declines, the 

current solution is replaced by the generated neighborhood 

solution. Otherwise, the current solution is replaced with 

the new neighborhood solution with some probability, 

which is generated using Eq. (27) and the same steps are 

repeated. After the new solution is accepted, inner loop is 

checked. If the inner loop criterion is met, the value of 

temperature is decreased using a predefined cooling 

schedule. Otherwise, a new neighborhood solution is 

regenerated and the same steps are repeated. The process of 

searching is repeated until the termination criteria are met 

or no further improvement can be found in the 

neighborhood of the current solution. The termination 

criterion (outer loop) is predetermined: 

( )C
Te R

−∆
≻                                 (27) 

where the temperature (T) is a positive control parameter. R 

is a uniform random number between 0 and 1. SA operators 

are described as follows: 

4.1.1. Neighborhood Move 

First, an initial solution randomly is generated. Then, 

neighborhood move is used to produces solution close to 

the current solution in search space. Basically, two 

neighborhood moves are employed: swapping move and 

shifting move [10]. In swapping move, two genes are 

randomly selected and the positions of these genes were 

swapped. Then, a new neighborhood solution is 

produced. In shifting move, two genes are randomly 

selected similarly and the second gene is put in front of 

other genes. Thus, a new solution is produced. 

4.1.2. Cooling Schedule 

Each problem requires a unique cooling schedule and it 

becomes very difficult to pick the most appropriate schedule 

within a few simulations. These schedules are proportional 

decrement schedule and Lundy and Mees schedule [11]. In 

proportional decrement schedule, the relationship between 

the temperature values in kth and (k+1)th iterations is 

according to Eq.(28) 

1+ = = f
M

k k

i

T
T T

T
α α                       (28) 

where Tk and Tk+1 are temperatures in kth and (k+1)th 

iterations, respectively and α is the coefficient between two 

temperatures that varies between 0 and 1. Besides, M, Tf and 

Ti are the number of iteration, the final and the initial 

temperatures, respectively. In Lundy and Mees schedule, the 

relationship between Tk+1 and Tk is according to Eq. (29)  

1
1

i fk

k

k i f

T TT
T

T MTT
β

β+

−
= =

+
                 (29) 

0β ≻  is the coefficient between two temperatures: 1kT +  

and kT . 

4.1.3. Inner Loop and Outer Loop Criterion 

Inner loop criterion determines the number of possible new 

solutions to produce in each temperature value and outer loop 

criterion is used to stop the searching process. 

4.2. Genetic Algorithms 

GA, one of the optimization and global search methods, is 

based on the simulated natural selection [4]. GA was 

developed by Holland in the 1970s. It is applied effectively to 

solve various combinatorial optimization problems and is 

based on probabilistic rules [7]. Selection, crossover and 

mutation are the most essential genetic operators. GA searches 
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new and better solutions to a problem by improving current 

population. The search is guided towards the principle of the 

survival of the fittest. This is obtained by extracting the most 

desirable characteristics from a generation and combining 

them to form the next generation. The population includes a set 

of chromosomes. Each chromosome in the population is a 

possible solution. The quality of each possible solution is 

measured by fitness function. First, GA generates initial 

population and then calculates the fitness value according to 

fitness function for each chromosome of the population. 

Fitness function is specifically generated for each problem. It 

may be simple or complex according to the problem. Then 

optimization criterion is checked. If the optimization criterion 

is met, this solution can be considered as the best solution. 

Otherwise, new population is regenerated using GA operators 

(selection, crossover, and mutation). According to their fitness 

values, chromosomes are selected for crossover operation 

using a selection operator. Therefore each chromosome will 

contribute to the next generation in proportion to its fitness. 

Then crossover and mutation operators are applied to the 

selected population to create the next population. The process 

continues through generations until the convergence on 

optimal or near-optimal solutions. However GA cannot 

guarantee to find the best optimal solution. GA operators are 

described as follows: 

4.2.1. Population 

It is a set of possible solutions to the problem. Since the 

size of the population varies according to problem, there is 

no clear mark on how large it should be. Then, fitness value 

for each chromosome of the population is calculated 

according to fitness function.  

4.2.2. Elitist Selection 

Selection operator selects the chromosomes to be mated 

according to their fitness values. Elitist selection is used here 

which means that a practical variant of the general process of 

constructing a new population is to allow the best 

organism(s) from the current generation to carry over to the 

next, unaltered. This guarantees that the solution quality 

obtained by the GA will not decrease from one generation to 

the next.  

4.2.3. Crossover 

Crossover operator is a powerful tool for exchanging 

information between chromosomes and creating new 

solutions. It is expected that good parents may produce better 

solutions.  

4.2.4. Mutation 

This operator is used to prevent reproduction of similar 

type chromosomes in population. Mutation operator 

randomly selects two genes in chromosome and swaps the 

positions of these genes to produce a new chromosome. This 

technique is called swap mutation. 

4.3. Hybrid Algorithm 

Hybridization refers to combining two search algorithms 

to solve a given problem. This is often a population-based 

search such as GA with local searches performed by other 

algorithms like simulated annealing, greedy algorithm, etc. 

The main drawbacks of SA algorithms are the computation 

time and limited convergence behavior. For better results the 

cooling has to be carried out very slowly and this 

significantly increases the computation time. Various 

computations in SA operators increase the computation time 

when the dimension of the problem grows. Optimum 

iteration should be selected to decrease computation time. 

With this iteration, hybrid approach is needed to obtain the 

global optimum solution. It is common to start SA from a 

random configuration. The performance of SA may be 

improved if more information is known about the problem in 

hand.  

Hence it might be better to start from a configuration 

which is a good local minima, like a configuration obtained 

by a GA algorithm search. Starting from a good local 

minimal with initial high temperature will provide an 

opportunity to escape the poor local minima and attain a 

better solution, possibly global minima [7, 8]. This paper 

uses a hybrid scheme to integrate P-D scheduling in SCM 

using GA and SA. GA can reach the region near an optimum 

point relatively quickly, but it can take many function 

evaluations to achieve convergence. A technique used here is 

to run GA for a small number of generations to get near an 

optimum point. Then the solution from GA is used as an 

initial point for SA that is faster and more efficient for local 

search.  

5. Computational Results 

This section explains the test problems which aim at 

showing the applicability of the proposed algorithm. The 

computational results are reported, evaluated and analyzed 

with respect to the proposed model. For the small and 

medium sized problems, the solutions presented by hybrid 

GA-S are compared with the results obtained from GAMS 

optimization software. 

5.1. Designing the Test Problems 

Various test problems, with different sizes are considered 

to assess the performance of the proposed algorithm. We 

consider three sets of 8 small sized, 8 medium sized and 3 

large sized problems to be solved using hybrid GA-S, i.e., a 

total of 19 instances were run. 

In each problem, the values of each group of parameters 

are generated randomly between their lower and upper 

bounds, based on Table 1. 

5.2. Setting the Hybrid GA-SA Parameters 

Parameters of the hybrid GA-SA include population size, 

cross over rate, mutation rate, and T. Primary tests are 

carried out in order to determine the values of these 

parameters. A trade-off between the solution time and the 

quality determined the appropriate value. The values for 
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population size, cross over rate, mutation rate, and T are set 

to 200, 0.3, 0.15 and 100 respectively. 

5.3. Computational Results 

The proposed P-D model has been solved using CPLEX 

solver of GAMS for small and medium sized problem. For 

large sized problem, the hybrid GA-SA is employed. The 

proposed algorithm is coded in Matlab. All the test problems 

are solved on an Intel corei5 computer with 4 GB RAM and 

2.67 GHz CPU. 

A quality criterion, ERROR, is defined to show the 

deviation of the value of the DE solutions from the values of 

GAMS, according to Eq. (30). 

(GASA.Z GAMS.Z)

.
ERROR

GAMS Z

−=                     (30) 

To investigate the performance of GAMS optimization 

software and hybrid GA-SA algorithm, two criterions, i.e., 

objective value and run time have been considered. The 

results of small and medium sized problem are shown in 

Table 2 and Table 3, respectively. 

Based on the results of Table 2, small sized problem are 

applicable to the problem in which the run time of GAMS 

optimization software is less than 50s. On average, hybrid 

GA-SA achieved 96% of the exact optimal solutions within 

17% of the exact run time. In other word, the average 

deviation from the optimum for small sized problem does not 

exceed 4% of error. The trivial deviation shows the efficiency 

of the proposed algorithm. 

Figure 1 depicts hybrid GA-SA runtime versus GAMS run 

time for small sized problem. It is shown that GAMS run 

time increases exponentially as the size increases. 

Figure 2 delineates hybrid GA-SA objective value versus 

GAMS objective value for small sized problem. It is clear 

that hybrid GA-SA objective value compared to that of 

GAMS decreases when the problem size increases. 

Base on the results of Table 3, in medium sized problem 

the run time of GAMS optimization software is less than 

150s. As it is obvious, hybrid GA-SA algorithm achieved 

89% to 92% of the exact optimal solution, within 9% to 18% 

exact run time. This result denotes the efficiency of the 

proposed algorithm. 

Figure 3 shows, hybrid GA-SA run time versus GAMS run 

time for medium sized problem. It is observed that the run 

time and complexity of solving problems by hybrid GA-SA 

are lower than GAMS optimization software. Besides, the 

differences between the run time of GAMS optimization 

software and hybrid GA-SA is increased, as the problem size 

accelerates. This means that hybrid GA-SA solves the large 

sized problem in an acceptable time. 

Figure 4 delineates hybrid GA-SA objective values versus 

GAMS objective value for medium sized problem. The 

trivial deviation shows the high accuracy of the proposed 

algorithm to cope with large sized problems. 

Objective value and run time for GAMS optimization 

software and hybrid GA-SA for large sized problem are 

calculated. As shown in Table 4, out of memory message of 

GAMS appears regarding test problem 19. This is due to the 

saturation of RAM and stopping the calculation before 

achieving an acceptable solution. 

We also considered 1000s as a limit to stop the algorithm 

after a specific run time. As it is clear, an error message is 

appeared in test problem 17 and 18 run by GAMS, which 

means that the run time exceeded 1000s and GAMS is not 

able to solve the problem. Furthermore, the proposed hybrid 

algorithm is not able to converge in considered limit but 

this algorithm achieved acceptable solution in all 3 test 

problems. It is observed that, the deviation of hybrid GA-

SA from the optimum for test problems 17 and 18 are 8% 

and 12%, respectively. This denotes the high capability of 

meta-heuristic algorithms for solving the large sized 

problem.  

 

Figure 1. Hybrid GA-SA run time versus GAMS run time for small sized problem. 
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Figure 2. Hybrid GA-SA objective value versus GAMS objective value for small sized problem. 

 

Figure 3. Hybrid GA-SA run time versus GAMS run time for medium problem. 

 

Figure 4. Hybrid GA-SA objective value versus GAMS objective value for medium sized problem. 
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Table 1. Some of important inputs for the model. 

Inputs Value 

cc
α
ɵ

 Bernoulli (0.7,{c,c}) 

Node position of x continuous uniform([0 200],{c}) 
Node position of y continuous uniform([0 200],{c}) 

train

cc
dis⌢  Euclidean distance 

travel

cc
tm⌢  ijdis ×continuous uniform([1 3],{c,c}) 

jctdem  Ceil(continuous uniform([1 5],{j})× continuous uniform([10 200],{c})× continuous uniform([1 5],{t})) 

kcf continuous uniform([5 10],{k}) 

traincap  , ,

( )j jct

j c t

vol dem

K

×∑
× continuous uniform([0.9 1.2]) 

jvol  continuous uniform([4 8],{j})) 

ϕ  
travel

cc

cc

tm

K

∑ ⌢

⌢

× continuous uniform([0.5 1.5]) 

jctdd  Ceil(0.01× ijdis ×continuous uniform([1 3],{i,i})) 

cos train

k
t  continuous uniform([500 1500],{k})×kcf{k} 

η  0.01 

cos price

jt  continuous uniform([1 4],{j}) 

A Ceil(
,

,

[ ( )]

train

cc jct
i jtrain trs man i

k ip

k i p

dis dem

c c c
N K N

+ × + ×
×

∑ ∑
∑ ∑

⌢

×continuous uniform([0.5 0.8])) 

Table 2. Comparison between the performance of GAMS and hybrid GA-SA (optimality and run time) for small sized problem. 

Problem 

number 

Comparison 

GAMS GA-SA 
(GASA GAMS)

GAMS

−
 ( )

GASA

GAMS
 GAMS 

error 

message 

GA-SA 

algorithm Stop 

condition 
Objective 

value 
Run time Objective value Run time Objective value Run time 

P01 1771000 19.232 1771000 4.323 0 0.224782 - - 

P02 2941900 21.221 2941900 4.213 0 0.19853 - - 

P03 2019900 23.932 2071180 4.196 0.025387 0.221635 - - 

P04 11315000 28.382 12092540 4.983 0.068718 0.175569 - - 

P05 23879000 35.24 24762360 5.893 0.036993 0.167225 - - 

P06 27042000 36.291 28374070 5.362 0.049259 0.156368 - - 

P07 34257000 45.234 36677180 7.291 0.070648 0.161184 - - 

P08 43188000 49.933 46105930 6.053 0.067563 0.144349 - - 

min 1771000 18.932 1771000 4.196 0.070648 0.144349 - - 

mean 18523100 27.16278 19349520 5.28925 0.039821 0.171449 - - 

max 43188000 45.234 46105930 7.291 0.067563 0.224782 - - 

Table 3. Comparison between the performance of GAMS and hybrid GA-SA (optimality and run time) for medium sized problem. 

Problem 

number 

Comparison 

GAMS GA-SA 
(GASA GAMS)

GAMS

−
 ( )

GASA

GAMS
   

Objective value Run time Objective value Run time Objective value Run time 
GAMS error 

message 

GA-SA 

algorithm 

Stop condition 

P09 97787000 64.242 105022500 10.7762 0.073992 0.167744 - - 

P10 205352700 68.485 221185350 11.0938 0.0771 0.161989 - - 

P11 369305700 71.854 403619480 11.731 0.092914 0.163262 - - 

P12 1065001800 82.734 1168635560 14.8388 0.097309 0.179356 - - 

P13 3070961300 119.537 3295015400 17.2633 0.072959 0.144418 - - 

P14 5646683700 131.772 6108022200 17.9937 0.081701 0.136552 - - 

P15 16160102500 141.293 17931197800 16.2919 0.109597 0.115306 - - 

P16 28585651800 149.2131 31591748100 13.8741 0.105161 0.092982 - - 

Min 97787000 64.242 105022500 10.7762 0.109597 0.092982 - - 

Mean 6900105813 103.6413 7603055799 14.23285 0.088842 0.145201 - - 

Max 28585651800 149.2131 31591748100 17.9937 0.072959 0.179356 - - 
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Table 4. Comparison between the performance of GAMS and hybrid GA-SA (optimality and run time) for large sized problem. 

Problem 

number 
Comparison 

 GAMS GA-SA 
(GASA GAMS)

GAMS

−
 ( )

GASA

GAMS
 

GAMS error 

message 

GASA 

algorithm Stop 

condition  
Objective 

value 
Run time 

Objective 

value 
Run time Objective value Run time 

P17 5.49217E+11 1000 5.07519E+11 1000 -0,08216 1 
Resource limit 

exceeded 
Time limit 

exceeded 

P18 1.63698E+12 1000 1.45287E+12 1000 -0,12672 1 
Resource limit 

exceeded 
Time limit 

exceeded 

P19 - - 4.75602E+12 1000 - - Out of memory 
Time limit 
exceeded 

min 5.49217E+11 1000 5.07519E+11 1000 -0,12672 1 - - 

mean 7.28732E+11 666.67 22.3882E+11 1000 -0.06962 0.66 - - 
max 1.63698E+12 1000 4.75602E+12 1000 -0,08216 1 - - 

 

6. Conclusions 

A new model for the integration of production and 

distribution scheduling in supply chain 

management has been developed in this paper which 

minimizes the costs of transportation and tardiness of 

delivery a product. We also considered rail transportation to 

move deteriorating items. A hybrid genetic algorithm-

simulated annealing is designed to solve the model for the 

large-sized problem instances of this mixed integer 

programming problem. Some small sized and medium-sized 

test problems have been solved. The results obtain from the 

hybrid GA-SA satisfactorily compared with results obtained 

from GAMS optimization software. Some other large-sized 

test problems have also been solved using the propose hybrid 

algorithm. 
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