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Abstract: A supply chain may be considered as an integrated process in which a group of several organizations, work 
together. The two core optimization problems in a supply chain are production and distribution planning. In this research, we 
develop an integrated production-distribution (P-D) model. The problem is formulated as a mixed integer programming (MIP) 
model, which could then be solved using GAMS optimization software. A differential evolution (DE) algorithm is applied to 
solve large-sized MIP models. To the best of our knowledge, it is the first paper which applied DE algorithm to solve the 
integrated (P-D) planning models in supply chain management (SCM). The solutions obtained by GAMS are compared with 
those obtained from DE and the results show that DE is efficient in terms of computational time and the quality of solutions 
obtained. 

Keywords: Integrated Production-Distribution Planning, Supply Chain Management, Differential Evolution Algorithm, 
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1. Introduction 

A supply chain (SC) may be considered as an integrated 
process in which a groups of several organizations, such as 
suppliers, producers, distributors and retailers, work together 
in order to convert raw materials into end products to be 
distributed to end users [1]. The two core optimization 
problems in a SC are production and distribution planning. In 
the production planning, decisions such as hiring and firing 
of labors, regular time and overtime production, 
subcontracting and machine capacity levels are made for a 
definite planning horizon (i.e. usually a one-year period). 
Whereas, in the distribution planning decisions relates to 
determining which facility (ies) would supply demands of 
which market (s). 

In a traditional SC, manufacturers, wholesalers, and retailers 
work as separate business entities seeking to maximize their 
own profits, which eventually lead to the profit 

of the whole system [2]. Recently, it is demonstrated that 
production and distribution decisions are mutually related 
problems and needs to be dealt with simultaneously in an 
integrated manner [3]. This kind of consideration not only 
advances the efficiency of both process, but also augments 
the profitability of the whole supply chain. 

Over the past few years, (P-D) planning has raised the 
interest of researchers. The published models in this area are 
divided into the following categories [4]: 

Category 1: Single-product P-D models. 
Category 2: multiple-product, single-plant P-D models. 
Category 3: multiple-product, multiple-plant, single or no 

warehouse P-D models. 
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Category 4: multiple-product, multiple-plant, multiple-
warehouse, single or no end user P-D models. 

Category 5: multiple-product, multiple-plant, multiple-
warehouse, multiple-end user, single-transport path P-D 
models. 

Category 6: multiple-product, multiple-plant, multiple-
warehouse, multiple-end user, multiple-transport path, no-
time-period P-D models. 

Category 7: multiple-product, multiple-plant, multiple-
warehouse, multiple-end user, multiple-transport path, 
multiple time-period P-D models. 

The mathematical model of this research belongs to the 
second category. Therefore, the literature related to this 
category has been reviewed. In 1993 Pyke and Cohen [5] 
examined the performance characteristics of a simple 
integrated P–D system comprising a single work center at a 
factory which produce multiple products, and a single 
retailer. The expedite batch size algorithm is able to compute 
expedite and replenishment inventory control policies for the 
entire chain. The large number of decision variables 
precluded the extensive accuracy testing of the algorithm. A 
MIP-based P–D model was presented in for which the 
Lagrangian relaxation was used to accommodate the 
production and distribution sub-problems, and sub-gradient 
optimization was implemented to coordinate the information 
flow in a hierarchical manner. This study extends the scheme 
by a heuristic method which modifies distribution decisions 
if capacity shortages occur at the production stage. A 
hierarchical P–D planning approach was developed for a 
single multinational factory transporting multiple product 
families to multiple warehouses or chain stores. The 
approach attempts to solve the problem optimally by 
aggregating the time periods and product families. The 
obtained aggregate optimal solution for the model is 
disaggregated for a single period on a rolling horizon basis to 
reduce the problem size. 

Lee and Kim developed one of the most generic P–D 
models in the literature and proposed a specific problem-
solving procedure using a hybrid approach combining 
analytic and simulation methods [6, 7]. In the proposed 
model, the first shop produces a number of parts which are 
used in the production of multiple products at the second 
shop. There is only a single plant modeled with two shops 
and a single stack point. The production and distribution 
capacity constraints in the proposed analytic model are 
considered as stochastic variables adjusted in accordance 
with general P–D characteristics obtained from a simulation 
model. Linear programming was used for the problem 
formulation minimizing the production, distribution, 
inventory holding, and shortage costs. An LP solver was used 
to implement the model and ARENA was employed as the 
simulation tool. This study does not investigate a multi-plant 
scenario and disregards a detailed production plan. 

A P–D planning problem between a manufacturing 
location and a DC was examined by Rizk et al. [8], in which 
multiple parallel machine centers at the manufacturing 
location, economies of scale on transportation costs, as well 

as dynamic demand at plants and distribution centers were 
taken into consideration. A MIP model of the production 
process and three different formulations representing the 
general piecewise linear transportation functions were used 
to develop three equivalent mathematical programming 
models. The research investigates the impact of choosing a 
suitable mathematical formulation on the problem-solving 
time. 

Nishi et al. [9] studied a distributed decision-making 
system for the integrated optimization of production 
scheduling and distribution planning. An integrated 
optimization model was formulated using MILP. The 
developed model was then decomposed into production 
scheduling and warehouse planning sub-problems using an 
augmented Lagrangian approach. A distributed optimization 
system was developed to solve the sub-problems by 
gradually generating the feasible solutions through 
repeatedly exchanging data obtained at each sub-system (data 
update) to accommodate the modifications caused by 
unforeseen changes. The study formulates the production 
processes at a single plant and considers a single warehouse 
comprising a number of storage areas. There are no end-users 
involved in this model and production/transportation 
alternatives are simplified. 

Farahani and Elahipanah [10] solved a MILP bi-objective 
model for a just-in-time (JIT) distribution planning of a 
three-echelon SC using multi-objective Genetic Algorithms 
(GAs). 

Two functions were considered for optimization: cost 
minimization as well as minimization of the sum of 
backorders and surpluses of products in all periods. In fact, 
the second objective function represents the JIT delivery and 
minimizes the earliness and tardiness of product deliveries. 
Delivery lead-times and capacity constraints were considered 
for a multi-period, multi-product and multi-channel network. 
Since the study primarily concerns the distribution of items 
from suppliers to retailers, this model replaces the fixed and 
variable production costs by the purchasing costs and 
completely disregards the production issues and the 
multiplicity of manufacturing plants. 

A new solution approach was proposed by Safaei based on 
the integration of mathematical and simulation techniques to 
solve an integrated multi-product, multi-period, multi-site P–
D planning problem [11]. A MILP model was developed for 
formulating the problem. In this study, to consider the 
stochastic factors, a hybrid mathematical-simulation 
approach was proposed consisting of independent 
mathematical and simulation models. The proposed model 
can be treated as a single-plant model with multiple machine 
centers and many characteristics of a real world P–D 
planning problem are disregarded in this model (e.g. detailed 
production alternatives, production cost elements, 
backlogging costs, and inventory management issues). 

In this study, we develop an integrated production-
distribution (P-D) model. The problem is formulated as a 
mixed integer programming (MIP) model, which could then 
be solved using GAMS optimization software. A differential 
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evolution (DE) algorithm is applied to solve large-sized MIP 
models. The solutions obtained by GAMS are compared with 
those obtained from DE and the results show that DE is 

efficient in terms of computational time and the quality of 
solutions obtained. 

 

Figure. 1. A two-dimensional cost function showing its countour lines and the process for generating [12]. 

This paper is organized as follows. Section 2 explains the 
characteristics of the problem; in section 3, the mathematical 
model is developed and section 4 proposes a differential 
evolution (DE) algorithm to solve the model; the 
computational results and a discussion are included in section 
5. Finally, the conclusions and proposals for future research 
are presented in section 6. 

2. The Problem Definition 

In this section, we explain the problem definition and basic 
assumptions to better understand the problem. As mentioned 
before, in this research we consider a multiple-product, 
single plant production-distribution model in (SCM). In the 
scheduling system considered in the production line, is flow 
shop. Batch processing is also applied which means that after 
the execution of a series of jobs (products) in the production 
line, the relevant jobs (products) are delivered to the vehicles 
center and vehicles distribute them to their destinations 
(customers). Customers are geographically dispersed around 
the depot (plant). This problem is called vehicle routing 
problem (VRP). Vehicles have capacity constraints and the 
number of vehicles are defined (VRP with capacity 
constraint). Each job (product) has a specific due date. We 
regard inventory cost when the jobs (products) deliver to 
customer earlier than due date and we have penalty cost at 
the time of tardiness. 

The considered assumptions in the production part are as 
follows: 

� The processing time of each job on each machine is 
definite. 

� The number of jobs and production machines are 
deterministic. 

� Jobs are uninterruptable which means that the 
production of a product must be continued up to the end 
of the process. 

� Processes are uninterruptable which means that no 
machine can process more than a job at the same time. 

� No job can process on more than a machine 
simultaneously. 

� No machine's failure exists and they are always 
available during the scheduling. 

The considered assumptions in the distribution part are as 
follows: 

� Each customer must be serviced only once and only by 
a vehicle. 

� Vehicles must start and terminate their rout from depot 
(production plant). 

� Total demand of customers must be less than the 
capacity of vehicle. 

� The last customer of each route must be serviced before 
the specific considered time. 

3. The Mathematical Model 

The following notations are used for the mathematical 
formulation of the proposed model: 

Sets and indices: 

m number of machines in production line 
n number of products (jobs) in production line 
v number of vehicles for products distribution 
l machine's index in production line 
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p product (job) 's index in production line 

k vehicle's index for distributing the products 
i, j, h job (customer) 's index (in fact, jobs are belonged to 

the customers, so job's index and customer's index are the 
same) 

Parameters: 

Tl,i processing time of job i on machine l 
Q

k
 capacity of vehicle k 

ei due date of job i 
qi occupied capacity of job i in vehicle 
tij transportation time from town i to town j 
Si service time of vehicle in town i 
cd transportation cost in return for the distance unit 
hi inventory cost of job i in return for the time unit 
pi amount of penalty for delivery of job i after due date in 

return for the time unit 
dij distance between customer i and customer j 
M a big number 
Variables: 

xi, j
k binary variable which is equal to 1 if vehicle k go to 

town j after town i 
zi, p binary variable which is equal to 1 if job i is processed 

in the situation p 
Bl, p initialization time of processing the job which is in the 

situation p on machine l 
CTi completion time of job i on production machines 
ri time when job i (product i) is delivered to the relevant 

destination 
tri amount of tardiness in delivery of job i 
eri amount of earliness in delivery of job i 
ATk availability time of vehicle k 
The mathematical formulation of the proposed model is as 

follows: 
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Objective function (1) minimizes the transportation cost, 
as well as the earliness and tardiness cost of product delivery. 
Constraint (2) represents that one job is assigned to each 
situation. Constraint (3) represents that one situation is 
assigned to each job. Constraint (4) assures that job 1 is 
processed on all machines without any delay. Constraints (5-
6) guarantee that there is no idle time on machine 1. 
Constraint (7) represents that minimization time of each job 
on machine l+1, won't be earlier than the completion time of 
job on machine l. Constraint (8) expresses that the job which 
is in the situation p+1 won't initialize on machine l till the 
job on situation p is finished. Constraint (9) shows the 
completion time of batch i. Constraint (10) assures that depot 
(production plant) is available in zero time. Constraint (11) 
expresses the available time of vehicle k. This is the time that 
all the jobs of the batch which is assigned to vehicle k, is 
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completed. Constraint (12) represents the capacity 
satisfaction of vehicle. Constraint (13) depicts that when a 
vehicle is entered to a node, it must be sent out from the 
mentioned node. Constraint (14) delineates that each vehicle 
must be serviced only once. Constraints (15-16) express that 
number of vehicle for service to customer is exactly equal to 
v. Constraints (17-18) represent the delivery time of job i. 
Constraints (19-20) express the tardiness and earliness in 
delivery of products to customers respectively. Constraints 
(21-23) represent the range of model variables. 

To solve the model with GAMS optimization software, it 
is necessary to linearize the non-linear constraints 
(constraints 9-17-18 are non-linear). 

The followings (constraints 24-25-26) are the linear forms 
of constraints 9, 17 and 18 respectively. 
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4. DE Algorithm 

Differential Evolution (DE) is a stochastic, population-
based optimization algorithm introduced by Storn and Price 
in 1996 [12]. Global optimization is necessary in fields such 
as engineering, statistics and finance. But many practical 
problems have objective functions that are non-differentiable, 
non-continuous, non-linear, multi-dimensional or have many 
local minima, constraints or uncertainty. Such problems are 
difficult to solve. DE can be use d to find approximate 
solutions to such problems. DE uses NP D-dimensional 
vectors parameter similar to Eq.(27) as a population for each 
generation G. 

, , 1, 2,.....,i Gx i NP=                           (27) 

NP is the number of population for each generation which 
does not change during the minimization process. The initial 
vector population is chosen randomly and should cover the 
entire parameter space. We consider a uniform probability 
distribution for all random decisions. In case a preliminary 

solution is available, the initial population might be 
generated by adding normally distributed random deviations 

to the nominal solution ,0nomx . DE generates new parameter 

vectors by adding the weighted difference between two 
population vectors to a third vector. This operation is called 
"mutation". The mutated vector’s parameters are then mixed 
with the parameters of another predetermined vector, the 
target vector, to yield the so-called trial vector. Parameter 
mixing is often referred to as "crossover". If the trial vector 
yields a lower cost function value than the target vector, the 
trial vector replaces the target vector in the following 
generation. This operation is called "selection". In the 
followings, the different parts of the proposed DE for the 
proposed P-D model are described. 

4.1. Mutation 

For each target vector , , 1,2,3,.....,i Gx i NP= , a mutant 

vector is generated according to Eq.(28). 

1 2 3, 1 , , ,.( )
i G r G r G r G

v x F x x+ = + −                      (28) 

In (2) { }1 2 3, , 1,2,.......r r r NP∈  are chosen randomly and F > 

0. F is also a real and constant factor [ ]0,2∈ which controls 

the amplification of the differential variation 
2 3, ,( )

r G r G
x x− . 

Figure 1 shows a two-dimensional example that illustrates 
the different vectors which play a part in the generation of 

, 1i Gv +  [12]. 

4.2. Cross-over 

Cross-over is introduced in order to rise the diversity of 
the perturbed parameter vectors. The trial vector is: 

, 1 1 , 1 2 , 1 , 1( , ,......, )i G i G i G Di Gu u u u+ + + +=                 (29) 

where 

, 1

, 1
,

( ( ) ) ( )

( ( ) ) ( )

1,2,.........., .

ji G

ji G

ji G

v if randb j CR or j rnbr i
u

v if randb j CR and j rnbr i

j D

+
+

≤ =  =  ≠  

=

≻             (30) 

In (30), ( )randb j  is the jth evaluation of a uniform 

random number generator with outcome [ ]0,1∈ . CR is the 

crossover constant [ ]0,1∈  which is determined by the user. 

( )rnbr i  is a randomly chosen index 1,2,........., D∈  which 

ensures that , 1i Gu + gets at least one parameter from , 1i Gv + .  

4.3. Selection 

The greedy criterion is used in order to decide whether a 
vector it should become a member of the next generation, i.e. 

G + 1. So, the comparison between the trial vector , 1i Gu +  

and the target vector ,i Gx  is applied. If vector , 1i Gu +  leads to 
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a smaller cost function value than ,i Gx , then , 1i Gx +  is set to 

, 1i Gu + ; otherwise, the old value ,i Gx  is retained. 

5. Computational Results 

This section explains the test problems which aim at 
showing the applicability of the proposed algorithm. The 
computational results are reported, evaluated and analyzed 
with respect to the proposed model. For the small and 
medium sized problems, the solutions presented by DE are 
compared with the results obtained from GAMS optimization 
software. 

5.1. Designing the Test Problems 

Various test problems, with different sizes are considered 
to evaluate the performance of the proposed algorithm. We 
consider two sets of 12 small and medium sized and 6 large 
sized problems to be solved using the DE, i.e., a total of 18 
instances were run. 

In each problem, the values of each group of parameters 
are generated randomly between their lower and upper 
bounds, based on Table 1. 

5.2. Setting the DE Parameters 

Parameters of the designed DE include CR, F, population, 
and iteration. Primary tests are carried out in order to 
determine the values of these parameters. A trade-off 
between the solution time and the quality determined the 
appropriate value. The values for CR, F, population, and 
iteration are set to 0.5, 2, 100 and 200 respectively. 

5.3. Computational Results 

The proposed P-D model has been solved using CPLEX 
solver of GAMS 23.6 for small and medium sized problem. 
For large sized problem the proposed DE is employed. The 
proposed DE is coded in Matlab 7.0.4. All the test problems 
are solved on a Pentium 4 computer with 448 MB RAM and 
2.80 GHz CPU and the results are summarized in Table 2. 

A quality criterion, ERROR, is defined to show the 
deviation of the value of the DE solutions from the values of 
GAMS, according to Eq.(31). 

. .

.

DE Z GAMS Z
ERROR

GAMS Z

−=                          (31) 

The results are observed in Table 2. To investigate the 
performance of GAMS optimization software and DE 
heuristic algorithm, two criteria, i.e. objective value and run 
time for small and medium sized problems have been 
considered. On average, DE algorithm achieved 91.7% of the 
exact optimal solutions within 16.7% of the exact run time. 
In other words, the average deviation from the optimum for 
the small and medium sized problems does not exceed 8.3% 
of error. The trivial deviation shows the efficiency of the 
proposed algorithm. 

We considered 1000s as a limit to stop the algorithm after 
a specific run time. As it is clear in Table 2, an error message 
is appeared in the test problems 11 and 12 run by GAMS 
optimization software, which means that the run time 
exceeded 1000s. Figure 2 depicts, DE run time versus GAMS 
run time. It is shown that GAMS run time increases 
exponentially as the problem size increases. On the average, 
DE algorithm achieved approximately 92% of the exact 
optimality in 16% of the exact run time. 

Figure 3 delineate DE objective value versus GAMS 
objective value. It is clear that DE objective value compared 
to that of GAMS decreases when the problem size increases. 

Figure 4 delineates the trend of optimality ratio and run 
time ratio. It is observed that decreasing in slope of run time 
ratio is more than the decreasing in slope of optimality ratio. 
In other words, the ratio of DE computational time compared 
to that of GAMS decreases when the problem size increases. 
This means that DE is efficient in terms of computational 
time and the quality of solutions obtained. 

Objective value and run time for GAMS optimization 
software and DE heuristic algorithm for large sized problem 
are calculated. As shown in Table 3, GAMS error message 
for exceeding the resource limit appear in test problems 13 
and 14. 

Furthermore, out of memory error message of GAMS 
appears regarding test problems 15, 16, 17 and 18. This is 
because of exponential increase in GAMS run time which 
leads to the saturation of RAM and stopping the calculation 
before achieving an acceptable solution. 

6. Conclusions and Future Research 

Directions 

A new model for the integration of production and 
distribution scheduling in supply chain management has been 
developed in this paper which minimizes the costs of 
transportation, earliness and tardiness of delivery a product. 
We also considered batch processing in production line, 
which leads to cost and time minimization of the whole 
supply chain. 

A DE algorithm is designed to solve the model for the 
large-sized problem instances of this mixed-integer 
programming problem. To the best of our knowledge, this 
paper is the first paper which used DE heuristic algorithm to 
solve the P-D planning models in supply chain management. 
Some small-sized and medium-sized test problems have been 
solved. The results obtain from DE satisfactorily compared 
with the results obtained from GAMS optimization software. 
Some other large-sized test problems have also been solved 
using DE. 

The following approaches are proposed for future 
research: 

� In this research, plant is regarded as a single-depot for 
distribution. Considering multiple-depots can be the 
subject for future research. 

� Cost minimization has been recognized as the most 
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respected performance measure for the evaluation of SC 
performance. Maximizing the service level and also 
maximizing the profit can be considered as P-D 
objective functions. 

� Products can have expired dates. This influences the 
order time and the maximum duration allowed for 
holding the products. 

� In this research, we considered identical vehicles for 
distribution of products. Consideration of non-identical 
vehicles with different speeds can be the future point of 
view. 

� In this research, we considered a flow shop scheduling 
system in production line. Consideration of job shop 
scheduling system can be more challenging for the 
future. 

� In this research, we only focused on the integration of 
production and distribution. It is also possible to add the 
supply-side and integrate the whole supply chain. 

� In this research, the demand certainty is considered. 
Considering the demand uncertainty can improve the 
applicability of the considered model. 

� There is still a need to further extend the effectiveness 
of the existing solution approaches and to test the new 
arrivals such as Ant Colony Optimization (ACO) and 
Bee Colony Optimization (BCO) techniques. 

Table 1. Some important inputs for the model. 

Inputs Value 

Tl, i U~(2,10) 
e (i) U~(20,50) 
q (i) U~(5,10) 
Qk U~(20,30) 
Si U~(3,10) 
h (i) U~(20,30) 
p (i) U~(10,15) 
dij U~(3,12) 
tij U~(3,20) 
cd 1 

 
Figure 2. The DE run time versus GAMS run time for 12 small and medium sized problems. 

 
Figure 3. The DE objective value versus GAMS objective value for 12 small and medium sized problems. 
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Figure 4. The trend of the optimality ratio and run time ration for 12 small and medium sized problems. 

Table 2. Comparison between the performance of GAMS and the proposed DE (optimality and run time) for 12 small and medium sized problems. 

Problem 

number 

GAMS DE Comparison (DE/GAMS) 

GAMS error message 
DE algorithm 

Stop condition 
Objective 

value 
Runtime 

Objective 

value 
Runtime 

. .
( )

.

DE Z GAMS Z

GAMS Z

−  ( )
DE

GAMS
 

Objective value Run time 

1 1601.658 22.52 1653.403 5.544173 0.032306986 0.246188834 - - 
2 2230.516 33.42 2258.396 9.948931 0.012499647 0.297693931 - - 
3 10374.62 51.245 10492.43 13.19527 0.011355508 0.25749372 - - 
4 8081.125 116.02 8548.524 23.18417 0.057838371 0.199829118 - - 
5 32196.14 174.215 33729.37 32.56415 0.047621389 0.186919325 - - 
6 41239.78 254.53 43411.41 43.95603 0.052658616 0.172694901 - - 
7 74151.21 344.52 79533.14 45.90918 0.072580446 0.133255482 - - 
8 47595.23 507.09 51745.88 49.24337 0.087207407 0.097109731 - - 
9 98374.6 692.665 109605.2 65.52565 0.114162004 0.094599332 - - 
10 98294.1 785.98 106904.5 95.561 0.087598719 0.121581975 - - 
11 206473.1 1000 227780.4 99.96404 0.103196656 0.099964036 Resource limit exceeded - 
12 341174.2 1000 371752.6 100.0773 0.089626937 0.100077295 Resource limit exceeded - 
Min 1601.658 22.52 1653.403 5.544173 0.114162004 0.094599332 - - 
Mean 80148.85 415.183 87284.61 48.72277 0.082315991 0.167283973 - - 
Max 341174.2 1000 371752.6 100.0773 0.011355508 0.297693931 - - 

Table 3. Comparison between the performance of GAMS and the proposed DE (optimality and run time) for 6 large sized problems. 

Problem 

number 

GAMS DE Comparison (DE/GAMS) 

GAMS error message 
DE algorithm Stop 

condition 
Objective 

value 
Run time 

Objective 

value 

Run 

time 

. .
( )

.

DE Z GAMS Z

GAMS Z

−  ( )
DE

GAMS
 

Objective value Run time 

13 524164.9 1000 496182.7 136.9375 -0.053384 0.136937534 Resource limit exceeded - 
14 760001.7 1000 708670.2 175.345 -0.067541 0.175345034 Resource limit exceeded - 
15 - - 869021.2 198.2927 - - Out of memory - 
16 - - 1341120 366.06 - - Out of memory - 
17 - - 2047323 433.6889 - - Out of memory - 
18   2847071 440.6421 - - Out of memory - 
Min 524164.9 0 496182.7 -51331.4 -0.053384 0.136937534 - - 
Mean 214027.8 333.3333 1384898 1170870 -0.060463 0.052047095 - - 
Max 760001.7 1000 2847071 2847071 -0.067541 0.175345034 - - 
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