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Abstract: Typhoid is among the most endemic diseases, and thus, of major public health concerns in tropical developing 

countries. In this study, we develop a deterministic compartmental mathematical model for assessing the effects of education 

campaigns, vaccination and treatment on controlling the transmission dynamics of typhoid fever in the community. We have 

shown that the disease free equilibrium state of the model is locally asymptotically stable if the basic reproduction number is 

less than unity. Careful analysis of the effective reproduction number has shown that, each of the intervention; education 

campaigns, vaccination or treatment has an effect in decreasing the transmission of typhoid fever in the community. Sensitivity 

analysis shows that, the most sensitive parameters are recovery rate for symptomatic infectious individuals, recruitment rate, 

vaccination rate, education campaign and transmission rate for carrier individuals. Both numerical and analytical results 

suggest that multiple control strategies are more effective than a single control strategy. 
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1. Introduction 

Typhoid fever is a communicable disease, found only in 

man and occurs due to systemic infection mainly by 

Salmonella typhi organism [1]. The disease is endemic in 

many developing countries and despite recent progress in 

water and sanitation coverage, it remains a substantial public 

health problem. Globally, it is estimated that typhoid causes 

over 16 million cases of illness each year, resulting in over 

600,000 deaths [2]. Typhoid has a long storied history as a 

public health scourge. Salmonella enteric serovar Typhi (S. 

Typhi) is a human restricted bacterial pathogen transmitted 

via faecal contamination of food and water [3]. While 

improvements in water and sanitation led to the elimination 

of typhoid from most developed countries during the 

twentieth century, the global burden of typhoid fever has 

recently been estimated to be between 13.5 and 26.9 million 

episodes and 190,000 to 216,000 deaths annually [4]. 

In many developing nations, the public health goals that 

can help to prevent and control the spread of typhoid fever 

disease through safe drinking water, improved sanitation and 

adequate medical care may be difficult to achieve. Health 

education is paramount to raise public awareness and induce 

behavior change [5]. 

Several mathematical models have been developed to 

explain the dynamics of the disease [6, 7, 2, 1, 8, 9] but none 

has incorporated a combination of public health education 

campaigns, vaccination and treatment as control strategies. 

This study is at hand to fill the gap by developing an ������ 

(susceptible, vaccinated, symptomatic infectious, 

asymptomatic infectious and recovered) model of typhoid 

fever with the mentioned control strategies. We assume that 

all susceptible individuals are equally likely to be infected by 

infectious individuals in case of contact, we also assume 

direct transmission of typhoid from infected to susceptible 

individuals and that there is a constant recruitment rate to the 

susceptible population. Furthermore, we assume that the rate 

of transmission for carriers is greater than that of 

symptomatic infectious individuals. 
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2. Model Formulation 

In this paper, we develop a deterministic compartmental 

typhoid transmission model that captures vaccination, 

education campaign and treatment as control as strategies. In 

order to study the impact of these control strategies on the 

dynamics of typhoid fever, this model considers the human 

population, ���	 divided into five sub-populations namely; 

susceptible, ���	, vaccinated, ���	, infectious, ���	, Typhoid 

carriers, ����	,  and recovered individuals, ���	.  Individuals 

are recruited into the susceptible population by either 

immigration or birth at the rate a constant rate Λ . We 

assume that proportion �  of ���	  progress to carrier class, 

while the compliment 1 � �  progress to symptomatic 

infectious compartment. Carriers can become symptomatic at 

some rate � or die due to typhoid at the rate ��. Infectious 

individuals can receive treatment and recover at the rate	�. 

Recovered individuals may become susceptible again at the 

rate ��	, this is due to the fact that typhoid does not confer 

permanent immunity on recovery. Susceptible individuals 

receive vaccination to protect them against infection at the 

rate �. Since vaccine wanes with time, then after its expiry 

the vaccinees can return back to susceptible class at the rate 

��. We assume that an individual in each compartment may 

undergo a natural death at rate �. Let �	and � be transmission 

rates for infectious and carrier individuals respectively then 

the susceptible population ���	 , is exposed to force of 

infection denoted by	�, where � � �� � ��� . It must be clear 

in mind that 1 � ��  is an educational parameter that caters 

for limiting both carriers and symptomatic individuals from 

spreading typhoid. In fact this parameter lies in an 

interval 0  ��  1 . When �� � 0  it means that no 

education campaigns are in place so susceptible population 

are ignorant of typhoid fever and when �� � 1 then it means 

that the all susceptible individuals are fully aware of typhoid 

fever, that is to say they know what causes the disease, how it 

is spread and how to avoid contracting the disease. 

Detailed description of parameters is shown in Table 1 

while the compartmental flow diagram of the model is shown 

by Figure 1. 

 

Figure 1. A compartmental diagram for the Typhoid transmission dynamics 

model that incorporates public Health Education Campaigns, Vaccination 

and Treatment. 

Table 1. Parameters and their description. 

Parameter Value/year Description Source 

! 106 Recruitment rate [12,13] 

"# 0.1 Rate at which the vaccine Wanes Estimated 

"$ 0.3 Rate at which recovered individuals lose immunity Estimated 

% 0.15 Recovery rate for symptomatic infectious individuals [2] 

& 0.6 Rate at which susceptible individuals are vaccinated Estimated 

' 0.02 Transmission rate for symptomatic infectious individuals Estimated 

( 0.01 Transmission rate for carrier individuals [12] 

) 0.5 Proportion of newly infected individuals who become carrier [4] 

*+ 0.4 Education parameter Estimated 

, 0.04 Rate at which carriers develop symptoms [12] 

- 0.142 Natural mortality rate of individuals [12] 

.# 0.01 Disease-induced mortality rate of carriers [12] 

.$ 0.012 Disease-induced mortality rate of symptomatic individuals [12] 

 

2.1. Model Equations 

From the description of the dynamics of typhoid and with 

the aid of the compartmental diagram in Figure 1, the 

following set of non-linear ordinary differential equations 

can be derived: 

/0

/1
� Λ � ��� � ��� � �� � � � �1 � ��	��� � ���		�  (1) 

/3

/1
� θ� � ��� � �	�                    (2) 

/5

/1
� �1 � �	�1 � ��	��� � ���	� � �� � �� � �	� ���1 � ��	�� (3) 

/56
/1
� ��1 � ��	��� � ���	� � �� � �� � ��1 � ��		��     (4) 

/7

/1
� �� � ��� � �	�                 (5) 

2.2. Feasibility Region 

From system (1-5) we have: 

/8

/1
� 9 � �� � ���� � ��� : 9 � ��          (6) 
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thus, 

���	 : ;

<
�1 − e>?@	 + ��0	e>?@                 (7) 

as t → ∞ , e>?@ → 0  and hence ���	 ≤ ;
< . Therefore, the 

model can be studied in the feasible region. 

Thus, 

D = E��, �, �, �� , �	 ∈ ℝHI : � + � + � + �� ≤ ;
<K          (8) 

which is bounded and positively invariant. 

3. Model Analysis 

The model system (1-5) is analyzed qualitatively to get 

insights into its dynamical features which give better 

understanding of the impact control strategies on the 

transmission dynamics of typhoid fever. 

3.1. Equilibria 

Setting the left hand side of system (1-5) equal to zero, we 

have: 

0 = Λ + ��� + ��� − �� + � + �1 − ��	��� + ���		�   (9) 

0 = θ� − �� + �	�                             (10) 

0 = �1 − �	�1 − ��	��� + ���	� − �� + �� + �	� +��1 − ��	�� 	     (11) 

0 = ��1 − ��	��� + ���	� − L� + �� + ��1 − ��	M�� (12) 

0 = �� − ��� + �	�                         (13) 

Model system (1-5) has a disease-free equilibrium 

	NO = L�O, �O, �O , ��O, �OM = �	 ;�PQH<	<�RHPQH<	 , ;S
<�RHPQH<	 , 0, 0, 0	.  (14) 

An endemic equilibrium N∗ = ��∗, �∗, �∗, ��∗, �∗	 satisfies �∗, �∗, �∗, ��∗, �∗ > 0. 

From the equilibrium equations we can show that N∗ exists 

with 

�∗ =	 �� + �� + �	�� + �� + ��1 − ��		
�1 − ψW	{�1 − �	�L� + �� + ��1 − ��	M + ���� + �� + �	 + ����1 − ��	} 

For N∗ to exist in the feasible region D, the necessary and 

sufficient condition is that: 

0 < �∗ < ;�PQH<	
<�RHPQH<	or equivalently,

;�PQH<	
<�RHPQH<	0∗ > 1  (15) 

Define �� = �
0∗

;�PQH<	
<�RHPQH<	 

ℛ� = �1 − ψW	Λ��� + �	��� + [� + �	 \ �1 − �	�
�� + �� + �	

+ ��
�� + �� + ��1 − ��		

+ ����1 − ��	�� + �� + �	�� + �� + ��1 − ��		] 

Then ��	  is a threshold parameter that determines the 

number of equilibria. We will show in Section (3.2) that �� is 

the basic reproduction number. 

Proposition 1. If 	�� < 1 then NO is the only equilibrium in 

(2.1); if	�� > 1, then there are two equilibria, disease free 

equilibrium, NO and a unique endemic equilibrium, N∗. 
3.2. The Reproduction Number, R0 

The basic reproduction number denoted by �O  is the 

average number of secondary infections caused by an 

infectious individual during his or her entire period of 

infectiousness [10]. The basic reproduction number is an 

important non-dimensional quantity in epidemiology as it 

sets the threshold in the study of a disease both for predicting 

its outbreak and for evaluating its control strategies. Thus, 

whether a disease becomes persistent or dies out in a 

community depends on the value of the reproduction 

number, 	�O . Furthermore, stability of equilibria can be 

analyzed using �O; if �O < 1 it means that every infectious 

individual will cause less than one secondary infection and 

hence the disease will die out and when �O > 1 , every 

infectious individual will cause more than one secondary 

infection and hence the disease will invade the population. A 

large number of �O may indicate the possibility of a major 

epidemic. For the case of a model with a single infected 

class, �O is simply the product of the infection rate and the 

mean duration of the infection. 

In this paper, the reproductive number accounts for the 

average number of new typhoid cases generated by a single 

typhoid infected individual (either from symptomatic class or 

from chronic enteric carriers) introduced into a wholly 

susceptible population. 

Due to complicated epidemics in our model, we compute 

the reproduction number, ��  using the next generation 

operator approach by [11]. The reproduction number for the 

model in system (1-5) is: 

ℛ� = ��>^_	;�PQH<	
<�RH`QH<	 a ��>b	c�<H/dHe	 + � f g

L<H/QHh��>ij	M+ hc��>ij	
�<H/dHe	L<H/QHh��>ij	Mkl                            (16) 

Considering equation (16) above, we can give the 

interpretations of the effective reproduction, ℛ� of our model 

as follows: 

When a single infective is introduced into the population, 

with probability 1 − �  it is a non-carrier, hence makes � 

effective contacts per unit time. This is multiplied by the 

average infectious period 
�

<H/dHe  for non-carriers; with 

probability � the infective is a carrier, and hence makes � 
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effective contacts per unit time during the average period 
�

<H/QHh��>ij	
it remains a carrier. This number should be 

augmented by the number of infections 
c��>ij	

<H/dHe
 caused by 

this infective after it becomes a non-carrier, with probability 
h

<H/QHh��>ij	
 to survive the carrier stage. Therefore, the 

expression in the big square brackets in equation (16) is the 

per capita average number of secondary infections. This 

number multiplied by the number of susceptibles at the 

disease-free equilibrium, 
;�PQH<	

<�RHPQH<	
 and educational 

parameter 1 − ψW gives ��. 

3.3. Local Stability of Disease-Free Equilibrium Point 

(DFE) 

We show that, the variation matrix, J�NO	 of model system 

(1-5) has negative trace and positive determinant. The partial 

differentiation of system (1-5) with respect to ��, �, �, �� , �	 
at the disease free equilibrium gives: 

( ) ( )

( )( ) ( )( )
( ) ( ) ( )

0 0

1

1

0 0

2

0 0

1

0

( ) 1 1

( )

1 1 ( ) 1 1 (1 )

1 1 (

0 0
( )

0 0

0 1 )0

e e

e e e

e e e

S S

p S d p S

p S p S

J E

d

θ µ ω ψ β ψ γ
θ ω µ

ψ β η µ ψ γ α ψ
ψ β ψ γ µ α ψ

− + − − − −
− +

− − − + + −

 
 
 =
 
 
  

− + −
− − − + + −

 

We have the following stability result that shows ��  is a 

sharp threshold. 

Proposition 2. NO  is locally asymptotically stable if �� < 1  and is 

unstable if �� > 1. 

Proof 

We want to show, when �� < 1, that the Routh-Hurwitz 

conditions hold, namely, �n�o�NO		 	< 	0	and �p��o�NO		 	>	0. 

�nLo�NO	M = �1 − �	�1 − ��	��O + ��1 − ��	��O− L� + �� + ��1 − ��	M − �� + �� + �	− �� + �	 − ��� + �	 

= �1 − �	�1 − ��	��O + ��1 − ��	��O− L4� + � + �� + � + �� + ��+ ��1 − ��	M 
If 

�1 − �	�1 − ��	��O + ��1 − ��	��O < L4� + � + �� + � + �� + �� + ��1 − ��	M 
then �nLo�NO	M < 0 

also, 

detLJ�NO	M = ��� + �� + �	�s� − tu	 
where 

s = �1 − �	�1 − ��	��O − �� + �� + �	 
t = �1 − �	�1 − ��	��O + ��1 − ��	 

u = ��1 − ��	��O 
� = ��1 − ��	��O − �� + �� + ��1 − ��		

 

Simplification gives 

�s� − tu	 = s��1 − tus�	 
So we have detLJ�NO	M = ��� + �� + �	�s� − tu	 

= ��� + �� + �	s��1 − tus�	 
detLJ�NO	M = ��� + �� + �	s��1 − ��	 

where ℛ� = v�
w/ 

Therefore, detLJ�NO	M > 0	 if and only if ℛ� < 1 . This 

proves the proposition. 

3.4. Analysis of Control Strategies 

In this section we will be interested to see what happens to �� when the control strategies namely 	�,�� , �,�, � and	� are 

varied. Since all these controls are functions of the effective 

reproduction number,��  then it is convenient to use, ��  to 

perform our analysis. 

The carriers in our system can have a great effect on ��: 

The parameters �, � and � are all related to the carrier class 

and all appear in the basic reproductive number. 

To see the effect of � on ��we note that: 

x7j
xg = b��>^_	;�PQH<	

<�RH`QH<	L<H/QHh��>ij	M                (17) 

It is clear that �� increases as � increases. This agrees with 

the intuition that higher transmissibility increases the basic 

reproduction number. 

To see the effect of � on �� we note that: 

x7j
xb = ��>^_	;�PQH<	

<�RH`QH<	 f g
L<H/QHh��>ij	M + hc��>ij	

�<H/dHe	L<H/QHh��>ij	M− c
�<H/dHe	k                               (18) 

thus  
x7j
xb > 0 provided � > c�<H/Q	>h��>c	��>ij	

�<H/dHe	                 (19) 
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We see that a greater probability to develop carriage will 

increase the basic reproduction number under the condition (19). 

To see the effect of vaccination coverage,	�	on �� we note: 

x7j
xR
� � y�wHvH�	

�RHPQH<	d
                         (20) 

where 

z �
��>^_	;�PQH<	

<�RH`QH<	
                             (21) 

s �
��>b	c

�<H/dHe	
                                     (22) 

t � bg

L<H/QHh��>ij	M
                           (23) 

u � bhc��>ij	

�<H/dHe	L<H/QHh��>ij	M
               (24) 

Since z, s, t, u > 0 then we realize from equation (20) that 

an increase in � causes a decrease in �� . This biologically 

suggests that an increase in vaccination rates of susceptible 

individuals will have a positive impact in controlling typhoid 

in a region where there is an outbreak. 

We can also analyze the effect of treatment rate � on ��: 

Straight forward computation gives 

x7j
xe = − y��>b	cH�Q

�<H/dHe	d                           (25) 

where 

u� = hc��>ij	
�<H/QHh��>ij		 and z is defined in equation (21). 

Since z, u� > 0 then we can see that an increase in treatment 

rate, � causes a decrease in ��. This biologically suggests that 

an increase in treatment rates of infectious individuals will have 

a positive impact in controlling typhoid in affected region. This 

is because treated individuals will stop transmitting the disease. 

To see the effect of education campaigns, 	��  on ��  we 

note that: 

x7j
xij = − yQw�<H/QHh{	dH�<H/Q	bgyQH��<H/Q	yQyd{HhyQyd{d

�<H/QHh{	d   

(26) 

where 

z� = Λ��� + �	��� + [� + �	 

z� = ���
� + �� + � 

| = �1 − ��	 
and expression for s is defined in equation (22) previously. It 

can be seen obviously that  
x7j
xij < 0 since z�, z�, s > 0. This 

means that as one increase public health education on 

typhoid fever, the disease transmission dies out. 

4. Sensitivity Analysis of }+ 
Sensitivity analysis is used to determine how sensitive a 

model is to changes in the value of the parameters of the model 

and to changes in the structure of the model. It helps to build 

confidence in the model by studying the uncertainties that are 

often associated with parameters in models. Sensitivity indices 

allow us to measure the relative change in a state variable 

when a parameter changes. Sensitivity analysis is commonly 

used to determine the robustness of model predictions to 

parameter values (since there are usually errors in data 

collection and presumed parameter values). Thus we use it to 

discover parameters that have a high impact on �� and should 

be targeted by intervention strategies. If the result is negative, 

then the relationship between the parameters and �� is 

inversely proportional. In this case, we will take the modulus 

of the sensitivity index so that we can deduce the size of the 

effect of changing that parameter. On the other hand, a positive 

sensitivity index implies a direct relationship between a given 

parameter and ��. 

The explicit expression of �� is given by the equation (16). 

Since	��  depends only on thirteen parameters, we derive an 

analytical expression for its sensitivity to each parameter using 

the normalized forward sensitivity index [14] as follows: 

0.8401eR e

e

R

R
θ

θ
θ

∂
= × = −

∂
Ύ  

Table 2. Parameters and their Sensitivity Indices. 

Parameter Sensitivity Index Description 

Λ +1 Recruitment rate �� +0.33 Rate at which the vaccine wanes �� +0.3 Rate at which recovered individuals lose immunity � -2.8570 Recovery rate for symptomatic Infectious individuals � -0.8404 Rate at which susceptible individuals are vaccinated � +0.3807 Transmission rate for symptomatic infectious individuals � +0.6187 Transmission rate for carrier Individuals � +0.2387 Proportion of newly infected individuals who become carrier �� -0.8284 Education  parameter � -0.0394 Rate at which carriers develop Symptoms � -0.2234 Natural mortality rate of Individuals �� -0.0221 Disease-induced mortality rate of symptomatic individuals �� +0.01 Disease-induced mortality rate of carriers 

 

Table 2 illustrates the sensitivity indices of ��, evaluated 

at the baseline parameter values given in Table 1. From Table 

2 it is clear that Re is most sensitive to � , thus, treating 

symptomatic infectious individuals is likely to have more 
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impact in eradicating the typhoid fever. Model parameters 

whose sensitivity indices are near −1 or +1 suggest that a 

change in their magnitude have a significant impact on either 

increasing or decreasing the size of Re. Thus, the remaining 

most sensitive parameters are recruitment rate, Λ , 

vaccination rate, �, education campaign, �� and transmission 

rate for carrier individuals, � in that order. The rest of the 

parameters whose indices are less than 0.5 in magnitude as 

shown in the table 2 contribute less to typhoid fever 

dynamics but their contribution is still significant. 

5. Simulation and Discussions 

The main objective of this study was to model the effects 

of public health education campaign, vaccination and 

treatment on the dynamics of typhoid fever. In order to 

support the analytical results, graphical representations 

showing the variations in parameters with respect to effective 

reproduction number have been generated with the aid of 

MATLAB and presented in this section. 
Since, most of the parameters were not readily available; it 

was found convenient to estimate them just for illustrations 

on how the model would behave in different real life 

situations. 

In order to perform simulations, baseline values of 

parameters from Table 1 presented used. 

 

Figure 2. Effects of symptomatic and asymptomatic Infectious transmission rates on ��. 

 

Figure 3. Effects of varying vaccination coverage on ��. 

Figure 2 shows that, increase in the transmission rates � 

and �  leads to increase in effective reproduction number. 

More importantly, it can be noted that transmission rate for 

asymptomatic individuals, � is greater than transmission rate 
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for symptomatic individuals, �	since an increase or decrease 

in �� due to � is more rapid than that due to �. This means 

that the carriers transmit the disease more rapid in the 

community as compared to symptomatic individuals. This 

might be attributed to the fact that, symptomatic individuals 

are quickly treated as they become sick whereas carriers can 

live with the disease for sometimes long, in so doing they 

keep on transmitting the disease until they show up 

symptoms and hence treated. 

Figure 3 shows that, high level of vaccination coverage 

leads to reduction in effective reproduction number, when 

��  1 then typhoid is effectively controlled or eliminated in 

the population. 

 

Figure 4. Effects of education campaigns on the transmission dynamics of typhoid fever. 

Figure 4 shows that, mass education campaign causes a significant reduction in the effective reproduction number and hence 

effective control or elimination of typhoid cases. 

 

Figure 5. Effects of Treatment on the reproductive number,	��. 

Figure 5 shows that, high treatment rate causes a sharp 

reduction in the effective reproduction number. It should be 

emphasized that carefully taken therapeutic treatment to an 

ill individual tends to kill all salmonella typhi bacteria from 

the host. When all bacteria are killed then an individual 

recovers from typhoid, in such a situation the disease tends to 
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diminish in the population. 

 

 

 

Figure 6. Effects of varying both education campaigns and treatment rates on	��. 

It is obvious from figure 6 that high level of treatment and 

education campaigns leads reduction in effective 

reproduction number and hence causes effective control or 

elimination of typhoid during an outbreak. It can be seen that 

high effort is needed to educate a large number of people so 

as to eliminate the outbreak. Treatment on its own side has a 

dramatic impact on the epidemic only when carefully 

administered to sick individuals early. 

 

Figure 7. Effects of varying both Treatment and vaccination coverage on ��. 

Contours in Figure 7 shows that a decrease of both 

treatment and vaccination coverage causes an increase in 

typhoid fever, whereas an increase of these controls tend 

decrease the disease. 

6. Conclusions and Recommendations 

In this paper we have developed a deterministic 

mathematical for typhoid that captures education campaigns, 

vaccination and treatment as control strategies. The disease 

free equilibrium has been calculated and proved to be locally 

asymptotically stable when ��   1. 

The effective reproduction number, �� has been calculated 

and from which different control strategies have been 

analyzed. The results have shown that controlling typhoid 

dynamics depends on different factors. Unless integrated 

effort is put into action, it is quite difficult to eradicate or 

even to limit typhoid epidemics. We recommend that 

different sectors like the education sector, sanitation sector 

and water supply organizations as well as health sector 

should work together so as to limit typhoid outbreak in the 

population. 

It must be emphasized that, both direct and indirect 
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education is a critical factor in typhoid control, it that has a 

greater and longer-lasting effect on disease management. 

Education should therefore target both human-to-human 

contact and also the intakes of pathogen material. We thus 

recommend that any typhoid-control program be developed 

in collaboration with culturally specific population-level 

education of susceptible and infected individuals. 

We must point out that vaccination, education campaigns 

and medical therapy and antibiotic treatment are not the only 

control measures against a typhoid outbreak. Water 

sanitation is also a possible prevention and intervention 

strategies. On the other hand, vaccination does not always 

work out due to the limitations of the medical development 

level and financial budget, which is also a restriction in our 

study. Moreover, in this paper, we consider the vaccination 

as a continuous state, since sometimes the vaccination 

process is discontinuous or seasonal, it can be modeled by 

impulsive differential equations, which is one of our future 

works. 

The other limitation, which should be acknowledged, is 

that the model developed in this study assumes that the 

disease is transmitted through human contact only, although 

the disease can be acquired through consumption, mainly of 

water, but sometimes of food, that has been contaminated by 

sewage containing the excrement of people suffering from 

the disease. 
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