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Abstract: In this paper we propose a new approach for solving the classification problem, which is based on the using ε-nets 

theory. It is shown that for ε-separating of two sets one can use their ε-nets in the range space w.r.t. halfspaces, which 

considerably reduce the complexity of the separating algorithm for large sets’ sizes. The separation space which contains the 

possible values of ε for ε-nets of both sets is considered. The separation space is quasi-convex in general case. To check 

necessary and sufficient conditions of ε-separability of two sets one can solve an optimisation problem, using the separation 

space as constraints. The lower bound of the separation space is convex for the exponential distribution and linear for the 

uniform distribution. So, we have convex and linear optimisation problems in these cases. 
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1. Introduction 

In 1987 D. Haussler and E. Welzl [1] introduced ε-nets. 

Since that time ε-nets are used in computational and 

combinatorics geometry.  

Let X  be a set (possibly infinite) and 2
X⊆R . The pair 

( ,X )R  is called a range space  with X  its points and the 

elements of R  its ranges. Typical examples of X  range 

spaces in geometric context are set of halfspaces in dR , set 

of balls in dR , set of convex hulls in dR , axis parallel 

rectangles in the plane [2], set of d-dimensional simplexes in 
dR [3], triangles in the plane [4], set of α-fat wedges in the 

plain [5].  

Numerous works study ε-nets of one set [2-6]. B. Aronov 

et al. shown the existence of ε-nets of size 
1 1

log logO
ε ε
 
 
 

 

for planar point sets and axis-parallel rectangular ranges [2]. 

J. Kulkarni et al. get an ε-net of size O
π

αε
 
 
 

 for α -fat 

wedges in 2R  [5]. B .Gärtner proved the existing of ε-nets of 

size 
lnd n

ε
 
 
 

, where d  is Vapnik-Chervonenkis dimension 

[3]. Matousek J. et al. shown that disks and pseudo-disks in 

the plane as well as halfspaces in 3R  allow ε-nets of size 

only 
1

O
ε
 
 
 

, which is best possible up to a multiplicative 

constant [6]. But, unfortunately, the analogous questions for 

higher-dimensional spaces remain open.  

In this paper we will build ε-nets of two sets for solving 

the classification problem.  

Consider two sets A  and B  in Euclidian space dR . 

Consider the set A  contains 
A

n  points, set B  contains 
B

n  

points. Let’s denote by  
A

conv   the convex hull of the set A . 

Let 
A B

conv conv∩ ≠ ∅ . 

Definition 1. Sets A  and B  are called ε-separable if there 

exist subsets 
1

A A⊂ , 
1

B B⊂ , such that 

1 1
( \ ) ( \ )conv A A conv B B = ∅∩                    (1) 

and 

1 1
( )

A B A B
n n n nε+ ≤ + .                                 (2) 

The classification problem consists of finding the 

hyperplane L , which separates dR  into two halfspaces Lε
+
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and Lε
−

, such that 1
A L B L

A B

n n

n n

ε ε ε
+ −∩ ∩

+
≥ −

+
.  

Definition 2. Hyperplane Lε  is called ε-separating for the 

sets A and B  if   

1
A L B L

A B

n n

n n

ε ε ε
+ −∩ ∩

+
≥ −

+
. 

Consider an infinite range space ( , )d d
R H , where dH  is 

the closed halfspaces in dR  bounded by hyperplanes. In [7] 

the following theorem was proved. 

Theorem 1. A necessary and sufficient condition that two 

sets of points A  and B  are ε-separable is there exist ,
A B

ε ε  

and corresponding ε-nets 
A

ANε , 
B

BNε  in ( , )
d d

R H  such that  

( )A A B B A Bn n n nε ε ε+ < +                             (3) 

and  

A B

A BconvN convNε ε = ∅∩ .                             (4) 

To find ,A Bε ε , which satisfy the inequality (3), let’s 

denote the separation space. 

Definition 3. The set  

{ }1 2 1 22

, 1 2( , ) (0,1) : , ,A B A B A BD N N convN convN
ε ε ε εε ε= ∈ ∃ ∩ = ∅  (5) 

is called the separation space for ,A B . 

Let sets A  and B  are generated by the general 

populations ξ  and η  with distributions Fξ  and Fη .  

Definition 4. The set  

{ }2

,
: ( , ) (0,1) : , { } , { }dD x y L R P L x P L yξ η ξ η+ −= ∈ ∃ ∈ ∈ ≤ ∈ ≤  (6) 

is called the separation space for ,ξ η . 

Consider the Euclidian space 1R . In [8] the following 

lemma was proved. 

Lemma 1. Let the inverse function Fξ  exist. Then the sets 

,Dξ η  and ( )2

, ,
: 0,1 \D Dξ η ξ η=  are separated by the curve  

( ) ( )( ) ( )( )( )1 1
min 1 ,1y x F F x F F xη ξ η ξ

− −= − − .          (7) 

Let’s consider the general case, when distribution 

functions don’t have the inverse functions in some points. We 

will use the generalized inverse [9].  

Definition 5. For an increasing function :T R R→   with 

( ) lim ( )
x

T T x↓−∞−∞ =  and ( ) lim ( )
x

T T x↑∞∞ = , the 

generalized inverse  

{ }( ) inf : ( ) ,T y x R T x y y R− = ∈ ≥ ∈                       (8) 

with the convention that inf ∅ = ∞ . If : [0,1]T R →  is a 

distribution function, :[0,1]T R
− →  is also called the 

quantile function of T . 

In [8] the following lemma was proved. 

Lemma 2. Sets ,Dξ η  and ( )2

, ,
: 0,1 \D Dξ η ξ η=  are separated 

by the line  

( ) ( ) ( )( ) ( ) ( )( )min 1 ,1y x F F x F F xη ξ η ξ

− − = − − 
 

.         (9) 

For the line , ( )A By x , which separates the sets  ,A BD  and 

,A BD  the following theorem was proved in [8]. 

Theorem 2. Let the following conditions  

(1) The sets ,A B  of size ,A Bn n  are generated by the 

independent continuous random variables ,ξ η . 

(2) The sets ,A BD  and ,A BD  are separated by the line 

, ( )A By x . 

are satisfied. Then there exist the following equality  

,
,
lim ( ) ( )

A B
A B

n n
y x y x

→∞
= , 

where 

( ) ( ) ( )( ) ( ) ( )( )1 1

min 1 ,1y x F F x F F xη ξ η ξ

− − = − − 
 

. 

In this paper we will consider separation curve ( )y x  for 

the sets ,Dξ η , ,Dξ η  and it’s properties. 

2. Results and Discussion 

2.1. Quasiconvexity of the Separation Curve 

Consider the function ( )f y x=  where ( )y x  is separation 

curve for the sets ,Dξ η , ,Dξ η . Let’s show that in the general 

case function f  is quasiconvex [10]. 

Definition 6. Let X  be the convex subset of dR . Function 

:f X R→  is called quasiconvex, if for any ,x y X∈  and 

[ ]0,1λ ∈   

( ) ( )(1 ) max ( ), ( )f x y f x f yλ λ+ − ≤
. 

Theorem 3. Function 

( ) ( ) ( )( ) ( ) ( )( )1 1

min 1 ,1
G G

y x F F x F F xη ξ η ξ

− − = − − 
   

is quasiconvex. 

Proof. A continuous function :f X R→  is quasiconvex if 

and only if at least one of the following conditions holds: f  

is nondecreasing; f  is nonincreasing; there is a point c X∈  

such that for ,t X t c∈ ≤ , f  is nonincreasing, and for 

,t X t c∈ > , f  is nondecreasing [10]. Let’s show that 
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function ( )y x  is nonincreasing. 

(1) Consider function ( ) ( )( )1

1( ) 1
G

f x F F xη ξ

−
= − . Function 

( )F xξ  is nondecreasing, so, ( ) 1

( )
G

F xξ

−
 is also 

nondecreasing. Then ( ) 1

(1 )
G

F xξ

−
−  is nonincreasing. 

Since ( )F xη  is nondecreasing, 

( ) ( )( )1

1
( ) 1

G
f x F F xη ξ

−
= −  is nonincreasing. 

(2) Consider function ( ) ( )( )1

2
( ) 1

G
f x F F xη ξ

−
= − . Function 

( ) 1

( )
G

F xξ

−
 is nondecreasing, so ( ) ( )( )1

G
F F xη ξ

−
 is also 

nondecreasing. Then ( ) ( )( )1

2
( ) 1

G
f x F F xη ξ

−
= −  is 

nonincreasing.  

Since function 
1
( )f x  and 

2
( )f x  are nonincreasing, 

{ }1 2min ( ), ( )y f x f x=  is nonincreasing. Thus, Theorem 3 is 

proved. 

In particular cases function ( )y x  may be convex or linear. 

Consider corresponding examples. 

2.2. Exponential Distribution 

Let ,ξ η  two random variables which is exponentially 

distributed with parameters ,ξ ηµ µ . Then according to 

Lemma 1 we have  

( )( ) min 1 , 1 , (0,1)y x x x x

µξξ
µη

η

µ
µ

 
 = − − ∈
 
 

. 

Lemma 3. Let two random variables ,ξ η  exponentially 

distributed with parameters ,ξ ηµ µ , then function ( )y x , 

which separates sets ,Dξ η  and ,Dξ η  is convex. 

Proof. Let’s consider the following two possible cases. 

(1) Let ξ ηµ µ>
, then  

( )( ) ( )1( ) 1 1 , (0,1)y x F F x x x

µξ
µη

η ξ
−= − = − ∈  

We need to show that the function ( )y x  is convex. Since  

( )
2

( ) 1 1 0y x x

µξ
µηξ ξ

η η

µ µ
µ µ

− 
′′ = − − >  

 
 as (0,1)x ∈ . 

So, function ( )y x  is convex as ξ ηµ µ> . 

(2) Let ξ ηµ µ< , then 

( )( )1( ) 1 1 , (0,1)y x F F x x x

ξ

η

µ
µ

η ξ
−= − = − ∈  

Also, need to show that the function ( )y x  is convex. 

Since  

2

( ) 1 0y x x

µξ
µηξ ξ

η η

µ µ
µ µ

− 
′′ = − − >  

 
 as (0,1)x ∈ . 

So, function ( )y x  is convex as ξ ηµ µ< . Thus, Lemma 3 

is proved. 

Let 1ξµ =  and 5ηµ = . Function ( )y x  is illustrated in the 

figure 1. 

 

Fig. 1. Function ( )y x  for exponential distribution. 

2.3. Uniform Distribution 

Let ,ξ η  two random variables which is  uniformly 

distributed with parameters ,a bξ ξ  and ,a bη η . According to 

the  Lemma 1, the set ,Dξ η  is lower bounded by the function 

( ) min , , (0,1)
a b b a a b a a

y x x x x
b a b a b a b a

ξ ξ ξ η ξ ξ η ξ

η η η η η η η η

 − − − −
= + + ∈  − − − − 

. 

Lemma 4. Let two random variables ,ξ η  uniformly 

distributed with parameters ,a bξ ξ  and ,a bη η , then function 

( )y x , which separates sets ,Dξ η  and ,
Dξ η  is linear 

decreasing function. 

Proof. For this reason consider the following two possible 

cases: 

(1) Let for ( ),h∈ −∞ ∞ : ( ) ( )F h F hξ η> , then  

( ) ( )( )1 1
a b b a

y x F F x x
b a b a

ξ ξ ξ η
η ξ

η η η η

− − −
= − = +

− −
; 

So, ( )y x  is linear function. Since 0a bξ ξ− < , function 

( )y x  is decreasing. 

(2) Let for ( ),h∈ −∞ ∞ : ( ) ( )F h F hξ η< , then 

( )( )1( ) 1
a b a a

y x F F x x
b a b a

ξ ξ η ξ
η ξ

η η η η

− − −
= − = +

− −
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So, ( )y x  is linear function. Since 0a bξ ξ− < , function 

( )y x  is decreasing. Thus, Lemma 4 is proved. 

Let 1, 5a bξ ξ= =  and 4, 7a bη η= = . Function ( )y x  is 

illustrated in the figure 2. 

 

Fig. 2. Function ( )y x  for uniform distribution. 

2.4. Normal Distribution 

Let ,ξ η  two random variables which is normally 

distributed with parameters ,ξ ξµ σ  and ,η ηµ σ . According to 

lemma 1 the set ,Dξ η  is lower bounded by the function 

( ) )1,0(,,min)( 21 ∈= xNNxy , 

where 

( )












 −−Φ+
Φ=

−

η

ηξξ

σ
µσ xm

N
11

1  

( )












 −Φ+
Φ−=

−

η

ηξξ

σ
µσ xm

N

1

2 1 . 

Let 3, 1ξ ξµ σ= =  and 5, 2η ηµ σ= = . Function ( )y x  is 

illustrated in the figure 3. 

 

Fig.3. Function ( )y x  for normal distribution. 

2.5. Checking the Necessary and Sufficient Conditions for 

ε-Separability 

Obviously, for any ,,A B A BDε ε ∈  the equality (4) holds. 

So, to check the ε-separability of the sets A  and B  it’s 

enough to check the existing such ( ) ,,A B A BDε ε ∈  that the 

inequality (3) holds. Consider the optimisation problem  

minA A B B

A B

n n

n n

ε ε+
→

+
                                 (10) 

,( , )A B A BDε ε ∈                                   (11) 

Let ( )min min,A Bε ε  be the solution of the task (10), (11). If the 

equality (3) doesn’t hold for ( )min min,A Bε ε , it doesn’t hold for 

all ( ) ,,A B A BDε ε ∈ , it means the sets A  and B  are not ε-

separable.  According to the Theorem 2, the condition (10) 

can be changed into   

,( , )A B Dξ ηε ε ∈ .                                (12) 

According to the Theorem 3, in the general case, the  set 

,Dξ η  is quasiconvex. According to the Lemma 4, the set 

,Dξ η  is convex if the distribution is exponential. In this case 

the problem (10), (12) is the problem of convex 

programming. In case of uniform distribution, according to 

the Lemma 5, the task (10), (12) is the task of linear 

programming. 

Let the point ( )0 0,x y  is the solution of the optimisation 

problem (10), (12).  

In the paper [8] the following theorem was proved. 

Theorem 4. Let  

(1) , 1
i

iξ ≥  have distribution Fξ , , 1j jη ≥  have 

distribution Fη , 

(2) , , , 1i j i jξ η ≥  be independent random variables, 

(3) Functions Fξ , Fη  have inverse and bounded densities 

,f fξ η  exist. 

Then we obtain the weak convergence  

( ) ( )( )1 1 2

, , ( ) ( ) ( ) (0, )n m n m n my n F F y F F y Nη ξζ ζ σ− −= = − → , 

where 

( ) ( )( )2 1 1
( ) 1 ( )F F y F F yη ξ η ξσ − −= − , as n → ∞ , 

( ) , 0m O nα α= >  

According to the theorem 4, the point ( )min min,A Bε ε  belongs 

to the neighbourhood  
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0 0 0 0, , ,
p p p p

A A B B

z z z z
x x y y

n n n n

σ σ σ σ    
 − + − +   
        

, 

where ( ) ( )( )1 1( ) 1 ( )F F y F F yη ξ η ξσ − −= − , p  is probability, 

pz is t-distribution quantile for the corresponding 

probabilities in p  (fig.4). 

If in the boundary point 
0 0,

p p

A B

z z
x y

n n

σ σ 
 − −
 
 

 the 

condition (4) of the theorem 1 doesn’t hold, namely: 

0 0

p p

A B

A B

A B

z z
x n y n

n n

n n

σ σ

ε

   
   − + −
   
    >

+

, 

then the sets A  and B  are not ε-separable. 

 

Fig. 4. The solution of the optimisation problem. 

Example 1. Consider two sets of points A  and B  

generated by the uniformly distributed general populations ξ  

and η . Let 500, 1000
A B

n n= = , 1aξ = , 5bξ = , 4aη = , 

7bη = . Let’s verify the ε-separability of the sets A  and B  

as 0,05ε = .  

Build the set ,Dξ η  (fig.5) and consider the task of linear 

programming  

2 min
A B

ε ε+ →
                                          (13) 

4 1

3 3
A B

ε ε− − ≤                                        (14) 

0 1
A

ε≤ ≤ , 0 1
B

ε≤ ≤ .                                   (15) 

The solution of the linear programming problem (13)-(15) 

is the point ( )0,25;0  (fig.5). Let’s find the confidential 

interval for the solution of the problem 

2 min
A B

ε ε+ →                                    (16) 

,( , )A B A BDε ε ∈                         (17) 

with probability 0,95p = . 

According to the theorem 4 

( ) ( )( )2 1 1
( ) 1 ( ) 0F F y F F yη ξ η ξσ − −= − =  as 0y = , 

so, the confidential interval for the problem (16), (17) 

solution degenerates to the point ( )0,25;0 .  

 

Fig.5. Lower bounds of the sets ,Dξ η  and ,A BD  and the linear programing problem’s solution the point ( )0,25;0  

Let’s verify the condition (3) of the theorem 1 

min min

0,0833 0,05A A B B

A B

n n

n n

ε ε+
= >

+
. 

The condition (3) doesn’t hold for ( )min min,A Bε ε , hence it 

doesn’t hold for all ,( , )A B Dξ ηε ε ∈ . So, the sets A  and B  

are not ε-separable as 0,05ε = . 

Example 2. Consider two sets of points A  and B  

generated by the exponentialy distributed general populations 
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ξ  and η . Let 1ξµ = , 5ηµ = , 500
A

n = , 500
B

n = . Let’s 

verify the ε-separability of the sets A  and B  as 0,05ε = . 

Let’s build the set ,Dξ η  (fig.6). Consider the problem of 

convex programming  

min
A B

ε ε+ →                                     (18) 

1 5
1A Bε ε− − ≤ −                                   (19) 

0 1Aε≤ ≤ , 0 1Bε≤ ≤ .                           (20) 

The solution of the convex programming problem (18)-

(20) is the point ( )0,245;0,245  (fig.6). 

 

Fig.6. Lower bounds of the sets 
,

Dξ η  and 
,A B

D  and the convex programing problem’s solution the point ( )0,245;0,245  

Let’s find the confidence interval for problem’s solution 

with probability 0,95p =   

minA Bε ε+ →                                  (21) 

,( , )A B A BDε ε ∈                                   (22) 

According to theorem 4 

( ) ( )( )2 1 1
( ) 1 ( ) 0,0517F F y F F yη ξ η ξσ − −= − =  as 0,245y = , 

then 

0,95
0,02

A

z

n

σ
= . 

So, the confidence interval for the problem’s (18)-(20) 

solution is [ ] [ ]( )0,225;0,265 , 0,225;0,265 . 

Let’s verify the condition (3) in the boundary point 

( )0,225;0,225   

min min

0,225 0,05A A B B

A B

n n

n n

ε ε+
= >

+
. 

The condition (3) doesn’t hold for ( )min min,A Bε ε , hence it 

doesn’t hold for all ,( , )A B Dξ ηε ε ∈ . So, the sets A  and B  

are not ε-separable as 0,05ε = . 

Example 3. Consider two sets of points A  and B  

generated by the general populations ,ξ η . Let random 

variable ξ  be uniformly distributed with the parameters 

1aξ = , 5bξ =  and random variable η  be normally 

distributed with the parameters 7, 1η ηµ σ= = . Let 

1000An = , 5000Bn = . Let’s verify the ε-separability of the 

sets A  and B  as 0,05ε = . Consider the problem of convex 

programming 

5 minA Bε ε+ ≥                                    (23) 

(1 )A A

B

b aξ ξ η

η

ε ε µ
ε

σ
 − + −

≥ Φ  
 

                             (24) 

0 1Aε≤ ≤ , 0 1Bε≤ ≤        (25) 

The convex programming problem’s solution 

( )0,0044;0,022  is illustrated in the figure 7.  



 International Journal of Theoretical and Applied Mathematics 2016; 2(2): 28-34 34 

 

 

Fig. 7. Lower bounds of the sets 
,

Dξ η  and 
,A B

D  and the convex programing 

problem’s solution the point ( )0,0044;0,022  

Let’s find the confidence interval for problem’s solution 

with probability 0,95p =   

5 min
A B

ε ε+ ≥                                 (26) 

,( , )A B A BDε ε ∈                                   (27) 

( ) ( )( )2 1 1
( ) 1 ( ) 0F F y F F yη ξ η ξσ − −= − →  as 0,022y = , 

hence the confidential interval degenerates to the point 

( )0,0044;0,022 . Let’s verify the condition (3)

min min

0,0191 0,05A A B B

A B

n n

n n

ε ε+
= <

+
. 

The condition holds. So, the sets A  and B  are ε-

separable as 0,05ε = . 

3. Conclusions 

Two sets A  and B  are ε-separable iff there exist their ε-

nets 
A

ANε , 
B

BNε  in ( , )d dR H  such that conditions (3)-(4) 

hold. To verify the conditions (3)-(4) it is enough to solve the 

optimisation problem (10)-(11). If the solution of the problem 

(10)-(11) does not satisfy the condition (3), then the sets A  

and B  are not ε-separable. According to the theorem 2, one 

can use the theoretical set ,Dξ η  as constraints for the 

optimisation problem (10)-(11). Three examples show 

verification of ε-separability for uniform and exponential 

distributions. 
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