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Keldysh type in the multivariate domain with the changing time direction are studied. Applying methods of functional analysis, 

“ ε -regularizing”, continuation by the parameter and by means of prior estimates, the existence and uniqueness of generalized 

and regular solutions of a boundary value problem are established in a weighted Sobolev space. 
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1. Introduction 

Interest of investigations of non-classical equations arises 

in applications in the field of hydro-gas dynamics, modeling 

of physical processes (see, e.g., [6], [7], [11], [12], [13], [18], 

[20],[21] and the references given therein). 

Non-classical model is defined as the model of 

mathematical physics, which is represented in the form of the 

equation or systems of partial differential equations that does 

not fit into one of the classical types-elliptic, parabolic, or 

hyperbolic. In particular, non-classical models are described 

by equations of mixed type (for example, the Tricomi 

equation), degenerate equations (for example, the Keldysh 

equation or the equations of Sobolev type (e.g., the 

Barenblatt-Zsolt-Kachina equation), the equation of the 

mixed type with the changing time direction and forward-

backward equations. 

In recent years the attention of many scholars has turned to 

the study of well-posed boundary value problems for non-

classical equations of mathematical physics, in particular, for 

forward-backward equations of the parabolic type ( e.g., [16], 

[19] and the references given therein). 

In the theory of boundary value problems for degenerate 

equations and equations of mixed-type, it is a well-known 

fact that the well-posedness and the class of its correctness 

essentially depend on the coefficient of the first order 

derivative (younger member) of equations (e.g., [3], [4], 

[8],[9], [14],[18] and the references given therein). 

In the paper [8] it was introduced the new called Fichera's 

function, in order to identify subsets of the boundary of the 

domain where the boundary value problem for such kind of 

equations is posed, where it is necessary or not to specify the 

boundary condition. A namely boundary conditions depend 

from sign of the Fichera's function Ф(x). 

In the work [3] (see, Chapter 1, p. 191-197 and Chapter 3 

p. 239-245) and papers [14],[22] new boundary conditions 

(so called type of problem “E “in which some part of the 

boundary shall be exempt from the boundary conditions) 

were studied. 

In the paper [17], [18] various Dirichlet problems which 

can be formulated for equations of Keldysh type, one of the 

two main classes of linear elliptic–hyperbolic equations were 

investigated. Open boundary conditions (in which data are 

prescribed on only part of the boundary) and closed boundary 

conditions (in which data are prescribed on the entire 

boundary) were both considered. Emphasis is on the 

formulation of boundary conditions for which solutions can 

be shown to exist in an appropriate function space. 
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Boundary value problems for equations of mixed 

hyperbolic-elliptic type with changing time direction had 

been studied details in [21]-[22].Great difficulties come into 

being in the investigation of linear systems of degenerate 

elliptic and hyperbolic equations. 

In mathematical modeling, partial differential equations of 

the mixed type are used together with boundary conditions 

specifying the solution on the boundary of the domain. In 

some cases, classical boundary conditions cannot describe 

process or phenomenon precisely. Therefore, mathematical 

models of various physical, chemical, biological or 

environmental processes often involve non-classical 

conditions. Such conditions usually are identified as nonlocal 

boundary conditions and reflect situations when the data on 

the domain boundary cannot be measured directly, or when 

the data on the boundary depend on the data inside the 

domain. In this case, boundary condition in particularly, 

maybe given for some part of the boundary with derivatives. 

Consequently, in this paper considered boundary conditions 

corresponds to the so- called well-posed boundary condition 

of Fichera’s and Keldysh an application new approaches 

form presentation. In numerical methods for solving these 

equations, the problem of stability has received a great deal 

of importance and attention. 

Finally, the problem for the system of equations of mixed 

hyperbolic-elliptic of Keldysh type, including property of 

changing time direction has not been extensively investigated. 

Therefore in present paper we will study this problem. 

2. Problem Statement, Notation and 

Preliminaries 

Let G  be a bounded domain in the Euclidean space nR  of 

the point ( )1
,...,

n
x x x= , including a part of hyper-plane 

0
n

x =  and with smooth boundary
2
,G C∂ ∈

{ }0 ,
n

G G x
+ = >∩ { }0

n
G G x

− = <∩ . The boundary of G+
 

consists of a part of hyper-plane 0
n

x =  for 0
n

x >  and 

smooth surface G+∂ . Analogically, the boundary G−
 consists 

of a part of hyper-plane 0
n

x =  for 0
n

x <  and smooth 

surface G−∂ .Assume that 

( ) ( ), ,   0;   , ,D G T T T S G T T= × − > = ∂ × −  where DΓ = ∂  

is a boundary of domain D . In the domain D  consider the 

system of equations: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1

1 1 2 1 2

1 1

11 12 11 12 1

2 2 2

2 1 1 2

1 1

21 22 21 22 2

, , ,

, , , , ,

, , ,

, , , , ,

i i

i i

n n

tt x i x i x

i i

t t

n n

tt x i x i x

i i

t t

L u k t u k x u a x t u a x t

b x t u b x t c x t u c x t f x t

L u k t a x t u a x t

b x t u b x t c x t u c x t f x t

υ υ

υ υ

υ υ υ υ

υ υ

= =

= =

= + ∆ + + 

+ + + + = 

= − ∆ + +



+ + + + = 

∑ ∑

∑ ∑
,                                       (2.1) 

where the 
x

∆ is Laplace operator 
2 2

2 2

1

...
x

nx x

∂ ∂∆ = + +
∂ ∂

 

Everywhere we will assume that the coefficients of the 

system of equation (2.1) are sufficiently smooth. Moreover, 

the conditions 

( ) ( )1 0
i

tk t > for ( )0,  , ,t t T T≠ ∈ − 1, 2i = ; ( )2
0

n
x k x <  for 

( )1
0,  ,...,

n

n n
x x x x G R≠ = ∈ ∈  

are satisfied. As far as is known that quadratic form of the 

equations of system (2.1) changes, then this system contains 

partitions degenerating elliptic, degenerating hyperbolic, 

mixed and composite type differential equations at the same 

time including changing direction time of variable in the 

domain D . 

Assume the notations: 

{( , ) : 0,  }T nx t x t T+
−Γ = ∈ Γ > = − , 

{( , ) : 0,  }T nx t x t T−
−Γ = ∈ Γ < = − , 

{( , ) : 0,  }T nx t x t T+Γ = ∈ Γ > = , 

{( , ) : 0,  }T nx t x t T−Γ = ∈ Γ < = [ , ]S G T T+ += ∂ × − , 

[ , ]S G T T− −= ∂ × − , { 0}nD D x+ = >∩ , { 0}nD D x− = <∩ . 

The boundary value problem Find the solution of system 

equations (1.1) in the domain D , satisfying the conditions: 

0u
Γ

= , 0
T

t
u +Γ

= , _ 0
T

t
u

−Γ
= ,                 (2.2) 

0υ
Γ

= , 0
T

t
υ +Γ

= , _ 0
T

t
υ

−Γ
= .                  (2.3) 

Remark 2.1. In this situation, the , ,  , T T T T

+ − + −
− −Γ Γ Γ Γ set are 

carriers as boundary conditions which depending on the signs

),,(22 txb ( )11
, ,b x t

( ) ( )1 , 1,2,
i

k t i = when the 

(2)

22 1t2   k ( ) 0 ,  b t δ− ≤ − < (1)

11 12 ( ) 0tb k t δ− ≤ − < conditions 

must be satisfied everywhere in D. Thus indicated boundary 

value problems for the system of equations (2.1) are putting 

in the form (2.2), (2.3) and setting the boundary conditions 

(2.2), (2.3) corresponds to and consistent with the approach 

cited above(e.g., [3], [4], [8],[17], [22],etc.). 

By the symbol 
L

C  we denote a class of twice continuously 

differentiable functions in the closed domain D , satisfying 

the boundary conditions (2.2) and (2.3), by
1, ( )LH D , 

2, ( )LH D  in Sobolev’s space with weighted spaces obtained 

by the class 
L

C  which is closed by the norms: 
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1,

2 2 2 2

2( )
1

( ( ) )
iL

n

t xH D
iD

u u k x u u dD
=

= + +∑∫ , 

2,

2 2 2 2 2 2 2 2

2 2 2( )
1 1 1

( ( ) ( ) ( ) )
i i i iL

n n n

tt x x x t x tH D
i i iD

u u k x u k x u k x u u u dD
= = =

= + + + + +∑ ∑ ∑∫ , 

respectively. Introduce, the space ( )2

k
W D Sobolev’s with 

norm (e.g. [2],[5]): 

( )2

22 2

,
,kW D K D

kD

u u D u dxdtα

α ≤
= = ∑∫

0

0 0 0 ... ,   ... ,   ,   .n

n n i

i

D D D D D
t x

α ααα α α ∂ ∂= + + = = =
∂ ∂

 

Since 
2
( ) 0k x ≠ for 0

n
x ≠ , by the Sobolev’s embedding 

theorems [2],[5] the functions from the spaces 
2, ( )LH D  will 

satisfy the boundary conditions (2.2), (2.3). 

Lemma 2.1. Assume that the following conditions 

(a) (1)

11 12 ( , ) ( ) 0tb x t k t δ− ≤ − < for 0t = , x G∈ ; 

(b) (2)

22 12 ( , ) ( ) 0tb x t k t δ− ≤ − < for 0t = , x G∈ ; 

(c) 
( ) ( )

2
1

1 1 2, ( )ia x t M k x≤ , 
( ) ( )

2
2

1 2 2, ( )ia x t M k x≤  

( )( )2
1

1 2 3 2

1

( ) ,
i

n

i x

i

a k M k x
=

− ≤∑ where 1 2 3, , ,M M M  M- are 

sufficiently large constants, 

(d) 
(2)

22 2 22

1

2 ( , ) ( , ) 0
n

i

i

c x t a b x t
=

− − ≤∑ , ( , )x t D∈ , 

(e) 
( ) 2
1

2 2 ( )ia M k x≤  , 

(f) 11( , ) 0nx c x t ≥ for 0nx ≠ , 11 11( ( , )) ' ( , ) 0t tc x t c x t= ≥ , 

( , )x t D∈
 

or 22 22 0t tc cα α− ≥ 11 11 0t tc cα α− ≥ , ( , )x t D∈
 
are holds. If 

4( , )n nx t tx Mα = − − , where constant 4M  is sufficiently large, 

then for all functions ( ),u x t , ( ),x tυ LC∈  the following 

inequality 

1 2 1( , ) ( , ) ( , )t t t

D D D

L u u dD L u dD u L u dDυ α αυ υ α υ
+ + −

+ + −+ +∫ ∫ ∫
 

( )
1, 1,

2 2

2 ( ) ( )
( , )

L L
t H D H D

D

L u dD m uυ υ υ
−

−+ ≥ +∫ ,       (2.4) 

holds true. Where the constant m is not dependent from 

functions ( , )u x t  and ( , )x tυ . 

Proof. Let ( , )u x t , ( , ) Lx t Cυ ∈  and consider the following 

integrals: 

1 1 1( , ) ( , )t t

D D

J L u u dD u L u dDυ α α υ
+ −

+ −= +∫ ∫  ; 

2 2 2( , ) ( , )t t

D D

J L u dD L u dDυ αυ υ αυ
+ −

+ −= +∫ ∫ . 

After integration by parts and allowing for boundary 

conditions of (2.2), (2.3) and taking into account nonnegative 

boundary integrals we get: 

1 1 1( , ) ( , )t t

D D

J L u u dD u L u dDυ α α υ
+ −

+ −= + ≥∫ ∫ ( )(1) (1) 2 (1) 2

11 1 1 1 2 2

1

1
(2 ( )) ( )) 2 ( )

2 ii

n

t t t i xi t t xx
iD

b k t k t u a k u u k uα α α α α
+ =


≥ − + + − + + 


∑∫

( )1

2

1

2 ( , )
i

n

i x t

i

a x t uυ α
=
∑ }2

12 11 11 12( )t t t t t tb u c c u c u dDαυ α α αυ ++ + − + 
(1) 2

1 ( ) ( , )t

G

k T u x T dxα
+

− − − +∫
(1) 2

1
( ) ( , )

t

G

k T u x T dxα
−

+ ∫
2 2

2 2( ) ( , ) ( ) ( , )x x

S S

k x u x t dx k x u x t dxα α
+ −

− +∫ ∫ , 

2 2 2( , ) ( , )t t

D D

J L u dD L u dDαυ υ αυ υ
+ −

+ −= + ≥∫ ∫

(2) (2) 2 2 2

22 1 1 22 22

1

1
(2 ( )) ( )) 2 ( ) ( )

2 i i i

n

t t t x t x x t t t

iD

b k t k t c cα α υ α υ υ υ α α α υ
−+ =

≥ − − − + + −


∑∫

(2) (2)

1 2 21 21

1

2 ( ) 2 2
i i

n

i x t i x t t t t

i

a u a c u b u dDαυ υ αυ υ υ −

=

+ + + + 


∑ (2) 2

1 ( ) ( , )t

G

k T u x T dxα
+

− − −∫
(1) 2

1
( ) ( , )

t

G

k T u x T dxα
−

+ ∫ .
 

Now, using inequalities of Cauchy-Bunyakovskiy, 

Poincare and conditions of Lemma2.1 for coefficients of 

system equations (2.1), and taking into account the fact that, 

the coefficients 
( ) ( )1 , 1,2
i

k t i =  are homogeneous on the 

boundaries, and then , summarizing estimates for 1J  and 2J

obtains the validity of inequality (2.4). 

Definition2.1. We say that ( , )u x t and ( , )x tυ are regular 

solution of problem ((2.1)-(2.3)), if the functions 

2,( , ), ( , ) ( )Lu x t x t H Dυ ∈ satisfy equation of (2.1) almost 

everywhere in domain D  . 

We need to seek new structure step of proof or non-

classical method for solvability of problem ((2.1)-(2.3)). For 



4 Mahammad A. Nurmammadov:  The Solvability of a New Boundary Value Problem with Derivatives on the Boundary  

Conditions for Forward-Backward Linear Systems Mixed of Keldysh Type in Multivariate Dimension 

this reason first of all, begin to formulate the theory of 

existence, first take the decaying system equations in the 

following form: 

( ) ( ) ( )1 1

1 1 2 1 11 11 1

1

( ) ( ) ( , )
i

n

tt i x t

i

L u k t u k x u a u b u c u f x t
=

= + ∆ + + + =∑ .                                                       (2.5)  

( ) ( ) ( )2 2

2 1 2 22 22 2

1

( ) ( , )
i

n

tt i x t

i

L k t a b c f x tυ υ υ υ υ υ
=

= − ∆ + + + =∑ .                                                           (2.6) 

For proving solvability of the problem ((2.5), (2.2)) we use 

the method of “ ε − regularization” and it is the fact that the 

hyper-plane 0
n

x =  is a characteristic for equation (2.5). 

Therefore, we can consider the boundary value problem 

((2.5), (2.2)) in the following form: 

Boundary value problem 1. Find the solution of equation 

(2.5) in the domain D+ , satisfying the boundary conditions 

0
T

u +
−Γ

= , 0
T

u +Γ
= , 0

T
t

u +Γ
= , 0

s
u + = .       (2.7) 

Boundary value problem 2. Find the solution of equation 

(5) in the domain D− , satisfying the boundary conditions 

0
T

u −
−Γ

= , 0
T

t
u −

−Γ
= , 0

T

u −Γ
= 0

s
u − = .         (2.8) 

By ( ) ( ),   L LС D С D+ −′ ′  we denote a class of infinitely 

differentiable functions in the closed domains ,D D
+ −

 

satisfying the boundary conditions (2.7) and (2.8), 

respectively. 

3. Uniqueness Solution of Problem ((2.1)-

(2.3)) in Space ( )2,L
H D  

Theorem3.1. Assume that the conditions of Lemma2.1 

hold, then the regular solution of the problem ((2.1)-(2.3)) is 

unique. 

Proof. Indeed, let 
1 1
,u υ  and 

2 2
,u υ  be two solutions of 

problem ((1)-(3)) which is satisfying the systems equations 

(1). Let
1 2 1 2

,  u u u υ υ υ= − = − . Then the functions ,u υ  will 

be satisfying equations: ( )1
, 0L u υ =  and ( )2

 , 0L u υ = in the 

domain D . Suppose that, 0, 0u υ≠ ≠  be satisfied. Let’s take 

sequence, functions { } { },
n n L

u Cυ ∈ , 1, 2,...n = etc, such that 

n
u u→  in ( )2,L

H D for n → ∞ , 
n

υ υ→  in ( )2,L
H D  for

n → ∞ . By the inequality of (2.4) we have 

( ) ( ) ( )
2, 2 ,2 2

1 2 1 ( ) ( )( ) ( )
, ,

L LH D H DL D L D
L u L u m uυ υ υ+ ≥ +  

where the constant 
1

m  independent from the functions 

( ),u x t and ( ),x tυ . Therefore we can assert that

( ) ( )1 1
,  ,

n n
L u L uυ υ→ , ( ) ( )2 2

,  ,
n n

L u L uυ υ→  for n → ∞ . 

By the virtue of inequality of (2.4) we have 

( )( ) ( )( ) ( )( )
( )( ) ( )

2 2 2

1, 1,2

1 1 2( ) ( ) ( )

2 2

2 1 ( ) ( )( )

, , , , , ,

, , .
L L

n n nt n n nt n n ntL D L D L D

n n nt n nH D H DL D

L u u L u u L u

L u m u

υ α υ α υ αυ

υ αυ υ

+ − +

−

+ + +

+ ≥ +
 

Hence, passing to limit as n → ∞  in last inequality, we get

0
n

u → , 0
n

υ →  in space ( )1,L
H D . On the other sides we 

have 

1, 2,( ) ( )
0

L L
n nH D H D

u u u u− ≤ − →  ,

1, 2,( ) ( )
0

L L
n nH D H D

υ υ υ υ− ≤ − →  

for n → ∞ . Hence, 0, 0u υ≡ ≡ . That is proof of Theorem 

3.1. Now, we need the proof of solvability problem ((2.1)-

(2.3)). 

4. The Existence Weak (Regular) 

Solution of Problems ((2.5), (2.7)) 

((2.5), (2.8)) 

Lemma4.1. Assume that the condition (a)-(c), (e), (f) of 

Lemma2.1 are holds, then for any functions 

( ) ( ) ( ) ( )( ),   ,L Lu x t C D u x t C D+ −′ ′∈ ∈  following inequalities 

( )( )
1,2

2

1 1 ( )( )
,

L
t H DL D

L u u m uα ++ ≥  , ( )( )
1,2

2

1 2 ( )( )
,

L
t H DL D

L u u m uα −− ≥                                           (4.1) 

are valid. 

Proof. Let’s consider the integrals: 

( )1 1t t

D D

L u u dD f u dDα α
+ +

+ +=∫ ∫  , 

( )1 1 .t t

D D

L u u dD f u dDα α
− −

− −=∫ ∫  

After integration by parts, allowing for boundary 

conditions and taking into account nonnegative boundary 
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integrals we get 

( )( ) ( ) ( )
2

2 (1) 2 (1)

1 1 11 1 1 1 2( )
1

1
, 2 ( , ) 2 ( , ) ( ( ) )

2 i i

n

t t t t i x x tL D
iD

L u u b x t k k u a x t k x u uα α α α α+

+ =

  ≥ − − + − +  
∑∫

[ ] }2 2

2 11 11(
it x t tk u c c u dDα α α+ + − +

(1) 2

1 ( ) ( , )t

G

k T u x T dxα
+

− − −∫  ( , ) ( ),Lu x t C D+′∀ ∈

 

( )( ) ( ) ( )
2

2 (1) 2 (1)

1 1 11 1 1 1 2( )
1

1
, 2 ( , ) 2 ( , ) ( ( ) )

2 i i

n

t t t t i x x tL D
iD

L u u b x t k k u a x t k x u uα α α α α−

− =

  ≥ − − + − +  
∑∫

[ ] }2 2

2 11 11(
it x t tk u c c u dDα α α+ + − +

(1) 2

1 ( ) ( , )t

G

k T u x T dxα
−

+ ∫  , ( , ) ( )Lu x t c D−′∀ ∈ . ( , ) ( )Lu x t c D−′∀ ∈ . 

Hence, using Cauchy-Bunyakovskiy and Poincare 

inequalities, taking into account conditions (a) – (c), (e),(f) of 

Lemma 2.1, for chosen constants with the fact that 

coefficients 
( ) ( )1

1 ,k t  is homogeneous on the boundaries ,then 

we get the truth of inequalities (4.1). Moreover, using 

inequality Holder’s we have 

2 1,

2

1 1( ) ( )LL D H D
f m u+ +≥  , 

2 1,

2

1 2( ) ( )LL D H D
f m u− −≥  

where the constants 
1 2
,m m  are independent from the 

function ( ),u x t .That is proof of Lemma 4.1 

Definition4.1.The function 

( ) ( ) ( ) ( )( )2, 2,,   ,L Lu x t H D u x t H D+ −∈ ∈  is said to be 

regular solution of problem ((2.5), (2.7)), ((2.5), (2.8)) if it is 

generalized solution satisfies almost everywhere equation 

(2.5) in domain D+
( D−

). 

Lemma 4.2. Let the conditions of Lemma 4.1 be fulfilled. 

Then regular solution of problem ((2.5), (2.7)), ((2.5), (2.8)) 

is unique. 

Proof. The Lemma4.2 is proved similarly way to the 

Lemma2.1 and Lemma 4.1.Since the equation of (2.5) is also 

degenerating then, due to regularizing effect to apply for 

equation (2.5) 

In the domain D+  , “ ε − regularized” equation of mixed 

type 

( ) ( )(1) (1)

1 1 2 11 1 11 1

1

( ) ( ) ,
i

n

tt t i x

i

L u k t u k u b u a u c u f x tε ε ε ε ε ε εε
=

= + − ∆ + + + =∑                                              (4.2) 

and we state for it the boundary value problem 

0
0

nx
uε =

= , 0
S

uε + = , 0
T

uε +Γ
= , 0

T

uε +
−Γ

= 0.
T

t
uε +Γ

=                                                         (4.3) 

Analogically, we will consider the following boundary value problem 

( ) ( )(1) (1)

1 1 2 11 1 11 1

1

( ) ( ) ,
i

n

tt t i x

i

L u k t u k u b u a u c u f x tε ε ε ε ε ε εε
=

= + + ∆ + + + =∑                                                (4.4) 

0
0

nx
uε =

= , 0
S

uε − = , 0
T

uε −
−Γ

= , 0
T

uε −Γ
= 0.

T
t

u ε −
−Γ

=  (4.5) 

Proceeding from the known results of the papers [4], we 

can affirm the following proposition. 

Remark4.2. If the conditions of Lemma 4.1, Lemma 4.2 

and ( ) ( )1

11 12 , 0tb x t k δ− ≤ − < ( ),x t D∈  are satisfied, then for 

any right-hand side ( )1
,f x t , ( ) ( )1 2,tf x t L D+∈

( ) ( ) ( )( )1 1 2, , ,tf x t f x t L D−∈  there exists a unique solution of 

boundary value problem (4.2), (4.3) ((4.4), (4.5)) from the 

space ( ) ( )( )2 2

2 2 W D W D+ −  and this solution allows 

following estimates 

( ) ( ) ( )2
2 2 2

2 2 2

1 1 3tL D L D W D
f f m uε+ + ++ ≥  , ( ) ( ) ( )2

2 2 2

2 2 2

1 1 4tL D L D W D
f f m uε− − −+ ≥                                     (4.6) 

where the constants 
3

m  and 
4

m are independent of the 

function ( ),u x t . 

Proof of this proposition proves similarly to Lemma2.1, 

Lemma4.1 and Theorem3.1. 

Theorem 4.1. (on the solvability of problem ( (2.5), (2.7)) 

Assume that the conditions of Lemma4.1 hold. If 

( ) ( ) ( )2 2 1 2 1 1 2,  , , , ( )
i jx x tk k M k x f x t f x t L D+≤ ∈ , 

( ) ( ) ( )1

11 12 , 0,tb x t k t δ− ≤ − < for ( )x,t D+∈ , 1,2,...,i, j n=

are satisfied, then there exists a unique regular solution of 

problem ((2.5), (2.7)) from the space ( )2,LH D+ . 

Theorem 4.2. (on the solvability of problem (2.5), (2.8)) 

Assume that the conditions of Lemma2.1 hold. If 

( ) ( ) ( )2 2 1 2 1 1 2,  , , , ( )
i jx x tk k M k x f x t f x t L D−≤ ∈

, 
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( ) ( ) ( )1

11 12 , 0,tb x t k t δ− ≤ − < ( )x,t D
−∈ , 1,2,...,i, j n=  are 

satisfied, then there exists a unique regular solution of 

problem ((2.5), (2.8)) from the space ( )2,LH D− . 

Proof of Theorem4.1 and 4.2 The following a priori 

estimates 

( )

( )

2

2

2 2 2

1 5 2

1

2 2 2

1 6 2

1

i

i

n

t xL D
iD

n

t xL D
iD

f m u k u u dD

f m u k u u dD

ε ε ε

ε ε ε

ε

ε

+

+

−

−

+

=

−

=

 ≥ + − + 
 

 ≥ + + + 
 

∑∫

∑∫
      (4.7) 

hold for the functions ( ) ( )2

2,u x t W Dε
+∈

( ) ( )( )2

2,u x t W Dε
−∈  and being the solution of boundary 

value problems ((4.2), (4.3)), ((4.4), (4.5)), respectively. 

Where the constants 
5

m  and 
6

m are independent of ε and

( ),u x t . The proof of these statements in easily obtained by 

integration by parts and using the Cauchy inequality. Further 

for obtaining the second a priori estimation we take the 

function
1
( )tξ such that 

( )1

T
( ) 1    , ,  0;

2
fort t Tξ η η≡ ∈ − − > >

1( ) 1   ,
2

for t t
ηξ η ≤ ∈ − −  

1( ) 0   , .
2

for t t T
ηξ  ≡ ∈ −  

 

Then, we consider the function ( ) ( ) ( )1
, ,W x t t u x tε εξ= . 

Obviously, the function ( ),W x tε  will satisfy the equation 

( ) ( ) ( ) ( ) ( )1 1

1 1 1 1 1 1 12 ( )tL W f k t t u k t t u Fε ε ε ε εξ ξ ξ′ ′′= + + = . (4.8) 

Hence, by virtue of inequalities (4.6) and (4.7), the set of 

functions ( ){ },F x tε  are uniformly bounded in space ( )2L D+ . 

In other side, in domain 
2

,
2

D x D T tη
η+  = ∈ − < < − 

 
 the 

equation 
1

L W Fε ε ε=  belongs to elliptical type of equation. 

Therefore, multiply equation of (4.8) by 
tt

Wε−  integrate by 

parts in the domain D+ , allowing boundary conditions, use 

the Cauchy-Bunyakovskiy inequality we get 

( )2

2 2 2 2 2

7 2 2

1 1
i i i

n n

tt t x x xL D
i iD

F m W W W k W k W dDε ε ε ε ε εε ε+

+

+

= =

 ≥ + + + − + − 
 

∑ ∑∫ , 

where constant 
7

m  is independent of ε , ( ),u x t . Now, let’s consider the function ( ) ( )2
,t C T Tξ ∞∈ − such that ( )2

0tξ ≡ for 

2 ,T t η− < < − ( )2
1tξ ≡ , t Tη− < < . Since ( )2

0 1tξ≤ ≤ and ( ) ( )1 2
1t tξ ξ+ ≡ , then taking ( ) ( ) ( )2

, ,x t t u x tε εφ ξ= . It is easy to 

see that the functions ( ),x tεφ  satisfy the equation 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1

1 2 1 1 2 1 2, 2 ( , ) ( ) ,tL t f x t k t t u x t k t t u x tε ε ε ε εφ ξ ξ ξ′ ′′= + + = Φ  .                                    (4.9) 

Hence include that the functions ( ) ( ), , ,
t

Ф x t Ф x tε ε  are uniformly bounded with respect to ε  in the space ( )2L D+ . 

Therefore, we can take finite difference 

( ) ( ), ,
h

x t h x t

h

ε ε
ε

φ φ
φ

+ −
=  

It is easy to see that the function ( , )x tεφ  satisfy the equations 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1

1 2 1 1 2 1 22 ( ) ,h t hL t f k t t u k t t u x tε ε ε ε εφ ξ ξ ξ′ ′′= + + = Φ
 

Using the results on smoothness of the solution of problem ((4.2), (4.3)) and a priori estimates (4.6), (4.7) and passing to 

limit as 0h →  in the obtained inequalities 

( )2

2 2 2 2 2

8 2 2

1 1
i i i

n n

h hh h xh x xL D
i iD

m k k dDε ε ε ε ε εϕ φ φ φ ε φ ε φ+

+

+

= =

 ≥ + + + − + − 
 

∑ ∑∫  

and establishing relation between the functions
1
( , )f x t  and ( , )Ф x tε  we get 

( ) ( ) ( )
2 2

2 2 2 2 2

1 1 9 2 2

1 1

, ( , ) .
i i

n n

t tt tx t x LL D L D
i iD

f f m u k u u k u u dD u x t C Dε ε ε ε ε εε ε+ +

+

+ +

= =

   ′+ ≥ + − + + − + ∀ ∈     
∑ ∑∫

 

From the representations of function ( ),x tεφ  and from equation (4.2) by standard estimation method, we get
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( )2 2

1
i i

n

x x

i

k u L Dεε +

=

− ∈∑ . Hence, by standard compactness 

method we can conclude that ( ),u x t  is generalized solution 

of problem ((2.5), (2.7)) and belongs to the space ( )2,LH D+  

and at the same time satisfy the equation (2.5) and condition 

(2.7) almost everywhere. In a similar way, repeating all the 

steps carried out for the domain D+  for D−  also we can 

establish that problem ((2.5), (2.8)) has a generalized solution 

and belongs to the space ( )2,LH D− . 

5. Main Result of Existence and 

Uniqueness Strong (Regular) Solution 

of Problems ((2.5), (2.7)) ((2.5), (2.8)) 

Definition5.1. (following [1],[4],[10]) The function 

( ) ( )1,, Lu x t H D+∈ ( ) ( )( )1,, Lu x t H D−∈  is said to be a 

strong solution of boundary value problem (10), (11) ((12), 

(13)), if there exists a sequences of functions 

{ } ( )n Lu C Dε
+′∈ { } ( )( )n Lu C Dε

−′∈  such that equality 

( ) ( ) ( ) ( )1,2
1 1lim , lim 0

L
n n H DL Dn n

L u f x t u u ++
→∞ →∞

− = − = , 

is fulfilled in the domain D−  as well if instead of the domain 

taken D+ . 

The following theorem on the existence of strong solution 

holds. 

Theorem 5.1. Assume that the conditions of Lemma 2.1 

hold. If 

( )2 2 1 2 ,    , 1,...,
i jx xk k M k x i j n≤ =  ,

( ) ( ) ( )1

11 12 0,   ,b k t x t Dδ− ≤ − < ∈  

are satisfied , then for any function

( ) ( )( )1 2 1 2  f L D f L D+ −∈ ∈  there exists a unique strong 

solution of boundary value problem (2.5), (2.7) from the 

space ( )1,LH D+  (for the problem (2.5), (2.8) from ( )1,LH D− ). 

Proof. From these Theorem 3.1, Theorem 4.1, Theorem4.2 

there exists ( ),u x t
+

 solution of problem ((2.5), (2.7)), 

( ),u x t
−

 solution of problem ((2.5), (2.8)) in the domains 

D+  and D− , respectively, and belonging respectively to the 

spaces ( )2,LH D+  and ( )2,LH D− . Then by the construction 

of such spaces there exists sequences { } ( )n Lu C D+′∈

{ } ( )( )n Lu C D−′∈  such that 

2 , 2,( ) ( )
lim lim 0

L L
n nH D H Dn n

u u u u+ −

+ + − −

→∞ →∞
− = − = . 

From the obvious inequality 

( ) ( ) ( ) ( )2, 2 ,2 2

1 1( ) ( )
,  

L L
n n n nH D H DL D L D

u m L u u m L u+ −+ −

+ + − −≥ ≥  

it follows that ( ){ }1 1nL u f+ +→  in 
2 ( )L D+ , for n → ∞ . 

( ){ }1 1nL u f− −→ in 
2 ( )L D− , for n → ∞ .. Thus, suppose that

( )1 2tf L D+ +∈ , ( )1 2tf L D− −∈ , then regular solutions u+
and 

u−
 are strong solution. We are constructing the sequences of 

functions ( )1

1 2nf W D+ +∈ , ( )1

1 2nf W D− −∈  such that 

{ }1 1nf f+ +→ in 
2 ( )L D+ , { }1 1nf f− −→  in 

2 ( )L D− , for 

n → ∞ .Then for the functions 
1f
+  and 

1f
−  there exists 

strong solution problem of ((2.5), (2.7)) and ((2.5), 

(2.8))from the space ( )2,LH D+  and ( )2,LH D−  respectively. 

So, by inequality of Lemma 2.1 we have 

( ) ( )2 1,
1

L
n nL D H D

f m u+ +

+ +≥ , ( ) ( )2 1,
1

L
n nL D H D

f m u− −

− −≥ . 

Hence, we can include that 
nu u+ +→ in ( )1,LH D+ , 

nu u− −→  in ( )1,LH D− , for n → ∞ and these functions are 

strong of problem ((5), (7)) and((5), (8)) respectively. 

6. The Solvability of Problem ((2.5), (2.2)) 

Theorem 6.1. (Gluing solutions in the spaces) Assume that

( ),i Lu H D+ +∈ , ( ),i Lu H D− −∈ ,i=1,2,hold,then the 

constructed function 

( ) ( ) ( )
( ) ( )

, , , ,
,

, , ,

u x t x t D
u x t

u x t x t D

+ +

− −

 ∈= 
∈

                  (6.1) 

will also be from the class ( ) ( ),
, ,  1, 2

i L
u x t H D i∈ = . 

Proof. The Theorem6.1 proved exactly and similarly way 

to the Remark6.1 (e .g. [22] ) . 

Thus, we have the proof of the following theorem 

accordance essentially a combination of the proof of 

Theorems 3.1, 4.1, 4.2 and Lemmas 2.1, 4.1, 4.2 and 

Theorem 6.1. 

Now, we can proof the main theorem of solvability of 

problem ((2.5), (2.2)). 

Theorem6.2. (On the solvability of problem ((5), (2))) 

Assume that the conditions of Lemma2.1, Lemma4.1 and 

Theorems 3.1, 4.1, 4.2, 5.1 are satisfied, then for any 

functions ( )1 1 2
,

t
f f L D∈  there exists a unique generalized 

solution of problem ((2.5), (2.2)) from the space ( )2,L
H D . 

Proof. Since on the base of Theorem 4.1, Theorem 4.2 and 

Theorem 5.1 there exists a unique solution ( ),u x t
+

, 

( ),u x t
−

 of problems ((2.5), (2.7)) and ((2.5), (2.8))from the 

space ( )2,LH D+  and ( )2,LH D−  respectively. Then function 

( ),u x t  which is constructed by formula (6.1) will also be 
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from the class ( ) ( )2,
,

L
u x t H D∈ and at the same time is 

generalized solution of equation (2.5), moreover, the 

functions ( ),u x t
+

and ( ),u x t
−

is strong generalized solution 

of problem ((2.5), (2.2)).Consequently, it means that the 

strong and weak solutions of corresponding problems are 

identity (e.g. [1],[10]). It follows that the problem ((2.5), 

(2.2)) is solvability. The uniqueness of problem ((2.5), (2.2)) 

follows by means of inequality of Lemma 2.1. That is proof 

of Theorem 3.1. Analogically, the existence strong solution of 

problem ((2.5), (2.2)) from the space ( )1,L
H D  can be proved. 

7. On the Solvability of Problem ((2.1)-

(2.3)) 

For proving the solvability of problem ((2.1)-(2.3)) we use 

the method of “continuation by parameter”. It holds. 

Theorem 7.1. (on the solvability problem of (2.6), (2.3)) 

Assume that the conditions 

( )(2)

22 2 22 1

1

2 ( , ) ( , ) ( , ) 0,   ,
n

i

i

c x t a x t b x t x t Dδ
=

− − ≤ − < ∈∑ ,  (7.1) 

( ) ( )
2

2

1 1 2, ( )ia x t M k x≤                            (7.2) 

holds, then for any functions of ( )2 2 2( , ), ( , )tf x t f x t L D∈  

there exists unique solution of problem ((2.6), (2.3)) in the 

space ( )2,LH D  . (in case , instead of condition of (7.2), 

replaced smallest of coefficient ( ) ( )2

1 ,ia x t  ,then there exists 

unique solution of problem ((2.6), (2.3)) in space ( )2

2W D ). 

Proof. By virtue of condition (7.1) and 
(2)

22 12 0tb k δ− ≤ − <  the operator 

(2) (2)

2 1 2 22 22

1

( ) ( )
i

n

tt i x t

i

L k t a b cυ υ υ υ υ υ
=

= − ∆ + + +∑  

is coercive. Since the coefficient of (2)

1 ( )k t  is sign fixed 

(according to [4]), then there exists unique solution of 

problem ((2.6), (2.3)) in space ( )1

2W D . If ( )1

2( , )x t W Dυ ∈  

then, (accordance to [15]) any solution of problem ((2.6), 

(2.3)) will be element of space ( )2

2W D . Analogically, 

repeating all the steps carried out for the solution 

( )2,( , ) Lx t H Dυ ∈  and also we can establish that problem 

((2.6), (2.3)) has generalized solution if the condition (7.1) is 

satisfied. Therefore the theorem 7.1 is proved. Now we must 

prove solvability of problem ((2.1)-(2.3)). Let 

1

i

n

tt x ti

i

M u Ku A u Bu Cu
=

= + + +∑ , 
1

i

n

x ti

i

Nu Pu Qu Ru
=

= + +∑  

where
(1)

1

(2)

1

0

0

k
K

k

 
=  
 

, 

(1)

1

(2)

2

0

0

i

i

i

a
A

a

 
=  
 

, 
11

22

0

0

b
B

b

 
=  
 

, 

2 11

22

0

0

k c
C

c

∆ + 
=  ∆ +  , 

(1)

2

(2)

1

0

0

i

i

i

a
P

a

 
=  
 

, 
12

21

0

0

b
Q

b

 
=  
 

, 

12

21

0

0

c
R

c

 
=  
 

, 
u

u
υ
 =  
 

1

2

,
f

f
f

 
=  
 

. 

Then the system equations (1) can be written in the form: 

fuNuMuL =+=  .                       (7.3) 

Theorem7.2. Assume that the conditions of Lemmas 2.1, 

4.1, 4.2 and Theorems 3.1, 4.1, 4.2, 5.1, 6.1, 6.2 7.1 

moreover ( )1 2 1 2 2, , t tf f f f L D∈ , 
2
( , ) 0f x T− = , 

( ) 2
1

2 2 ( )ia M k x≤  are fulfilled, then there exists a unique 

solution of problem (2.1)-(2.3) in space ( )2,LH D . In case of 

( )1

2ia  is smallest then there exists a unique solution of 

problem ((2.1)-(2.3)) from the space 2

2, 2
( ) ( )

L
H D W D∩ . 

Proof. Multiply the equation (7.3), by the vector 

( )1 ,tuη α υ= −  in domain D, after integration by parts and 

using the Cauchy inequality, allowing for boundary condition 

(by analogically action to the Lemma2.1) we get the 

following estimates 

2 1,( ) ( )LL D H D
Lu m u≥ or

1
2 1, 2( ) ( ) ( )LL D H D W D

Lu m u≥
∩

   (7.4) 

Now, let 
,0tH  - is the space of vector function 1 2( , )φ φ φ=  

such that ( )1 1 2 2, ,t L Dφ φ φ ∈  and 1( , ) 0x Tφ − = .The norm of 

space 
,t SH  is defined by 

2 2 2

1 2,0 0 0tt
φ φ φ= +  

From the results of the theorems 6.1, 7.1 it follows the 

following a prior estimates 

2,

6
( ) ,0LH D t

u m M u≤ or
2

2, 2

7
( ) ( ) ,0LH D W D t

u m M u≤
∩

   (7.5) 

where m, 6m , 7m constant are not dependent from ( , )u x t .It 

remains to show that, analogical estimates(7.4), (7.5) are also 

have to for operator Lu . Indeed, we may rewrite 

uNuLuM −= , then 

( )
2,

8
( ) ,0 ,0LH D t t

u m Lu Nu≤ +
 
or ( )2

2, 2

9
( ) ( ) ,0 ,0LH D W D t t

u m Lu Nu≤ +
∩

 

are valid. Now, we consider the set of equations: 

uNuMuL ττ += where 0 1τ≤ ≤ . Obviously, the 

following a prior estimate is uniformly bounded respect to 

parameter of τ :
2,

10
( ) ,0LH D t

u m L uτ≤
 
where 10m  

independent from parameter τ  and ( , ).u x t  Other side for 

0τ =  we have uMuL =0 . In this case were considered 

problem is solvable. Notice that if 1τ =  then 1L L= .Then as 

well as known method of continuation by parameter (for 

example, see [15],etc.) with the standard approaches the 
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solvability of problem (2.1) ,(2.3) ,(2.4) can be proved. Author suggests the open problem (7.6), (7.7): 

1 2( ) ( ) ( . ) ( , ) ( , ) ( , )tt xx t xLu K t u K x u a x t u b x t u c x t u u u f x t
ρ≡ + + + + + =                                        (7.6) 

( )1
0, 0, ( 1,1),tK t t t> ≠ ∈ − ( )2

0, 0, ( , ), 0, 0, 1,xK x x x α β α β ρ< ≠ ∈ < > > −
 

the coefficients of equation (7.6) are sufficiently smooth . 

The boundary value problem. Find the solution of equation 

(7.6) in domain { }, 1 1D x tα β= ≤ ≤ − ≤ ≤ , satisfying the 

conditions: 

1, 0 1, 00, 0, 0, 0x x t x t xu u u uα β= = =− > = <= = = = .    (7.7) 

8. Conclusion 

The solvability of the boundary value problem for linear 

systems of the mixed hyperbolic-elliptic type in the 

multivariate domain with the changing time direction are 

studied. The existence and uniqueness of generalized and 

regular solutions of a boundary value problem are established 

in a weighted Sobolev space. In this case applying idea of 

result works (e.g., [1], [10],[22]) , and Theorem 6.1,6.2, 7.1, 

7.2 prove that weak and strong solutions of the boundary 

value problem for linear systems equations of the mixed 

hyperbolic-elliptic type in the multivariate domain with the 

changing time direction are identity. . 
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